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ABSTRACT

Missing data is a common problem encountered by empirical researchers and practitioners.

This dissertation is a collection of three essays on handling imperfectly observed economic data.

The first essay addresses temporal aggregation where some high frequency data are missing but

their sum or average are observed in the form of low frequency data. In a vector autoregression

model with varied frequency data, the explicit form of the likelihood function and the posterior

distribution of missing values are found without resorting to the recursive Kalman filter. The

second essay further discusses data aggregation in a two-equation model in which the missing

values are imputed by a regression. In two scenarios, the likelihood function is shown to be

separable and the analytic maximum likelihood estimator can be obtained by two auxiliary

regressions, which is advantageous to the conventional least squares imputation approach in

terms of both efficiency and computability. The third essay concerns the finite-sample bias of

estimators associated with the monotone instrumental variables, which is a useful assumption

to partially identify the counterfactual outcomes. It is shown that a multi-level bootstrap

procedure can reduce and gradually eliminate the bias. A simultaneous simulation strategy is

also proposed to make multi-level bootstrap computationally feasible.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Topics of the dissertation

Most economic data, at the microeconomic or macroeconomic level alike, are observational.

A researcher does not have full control on the quality of the data collected for empirical stud-

ies. Sooner or later, one will encounter the missing data problem. Missing data is a broad

concept that encompasses many possibilities. First, sometimes a few observations are missing

at random, which is relatively easy to handle. Two quick solutions are either to discard the

missing values in the regression or interpolate them by ad hoc mathematical procedures such

as polynomial fillings. More advanced treatments include multiple imputation, expectation-

maximization and Bayesian data augmentation methods. Second, sometimes disaggregated

data are unobservable to the researcher but their sum or average can be observed. This is the

data aggregation problem. Though one can align the variables either by aggregating the ob-

servables or interpolating the disaggregated missing data, the problem can be more effectively

handled by exploring the underlying data generating process and the aggregation constraints.

Third, there are cases in which some non-experimental data are counterfactual and can never

be observed. The huge body of literature on the treatment effect identification attempts to

infer the counterfactuals from the observables under proper identification assumptions.

This dissertation is a collection of three essays on handling imperfectly observed economic

data. The first essay addresses the temporal aggregation. It is motivated by the fact that

macroeconomic data are not observed at a uniformed frequency and the best available data

could be, for example, a monthly-quarterly mixture. A tractable approach that makes full use

of data at varied frequencies is proposed in a Bayesian framework. It contributes to the litera-

ture by articulating the closed-form likelihood and posterior latent variables without resorting
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to the recursive formula prescribed by the Kalman filter. The second essay revisits an old two-

equation regression model on an aggregation problem mostly suitable for the microeconomic

data analysis. The first equation regresses the dependent variable of interest on a set of covari-

ates. However, one key covariate does not have disaggregated data, which are imputed by the

second regression equation. The main contribution of that paper is the discovery of an analytic

maximum likelihood estimator obtained by two auxiliary regressions. That implies an efficient

estimator can be obtained without computational barriers. The third essay discusses finite-

sample bias correction of an estimator associated with the monotone instrumental variables,

which is a useful assumption for identifying treatment effects. The innovative part of the paper

is a multi-level bootstrap procedure, which is shown to effectively reduce the finite-sample bias.

In addition, higher level bootstrap does not necessarily suffer from the curse of dimensional-

ity, since a simultaneous simulation strategy can make multi-level bootstrap computationally

feasible.

1.2 Organization of the dissertation

The rest of the dissertation will be organized as follows.

Chapter 2 discusses temporal aggregation in the context of a vector autoregression model

with varied frequency data. After setting up the model that allows data being observed at

arbitrarily mixed frequencies, we make explicit the likelihood function and the posterior latent

variables by exploring the covariance structure of the time series and the aggregation con-

straints. Then the new approached is compared with the conventional Kalman filter solutions.

The major difference is that our method uses all the information as a whole while the Kalman

filter updates and assimilates information date by date. The paper also considers using infor-

mation block by block. The block Gibbs sampler is inspired by the Markov property of the

autoregressive series. The sampler runs fast on evenly aggregated data. Lastly, the approach

is applied to a structural vector autoregression model that describes dynamic effects of the

monetary policy on future outputs and prices. Using varied frequency data effectively relaxes

the identification assumption that monetary policy shocks have no contemporaneous effects on

the real economy.
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Chapter 3 further studies the data aggregation problem in a two-equation regression model.

We revisit the model and find that the likelihood function is separable by suitable reparame-

terization if one instrument corresponds to one endogenous regressor. In that case, an analytic

full-information maximum likelihood estimator exists and can be obtained by two auxiliary

regressions. For a comparison with our maximum likelihood estimator, the properties of least

square solutions to the model are also discussed. For regressions with endogeneity problems,

some LS estimators are not consistent, and some consistent estimators discard apparent in-

formation. Those drawbacks are overcome by the ML estimator, which is advantageous in

terms of both efficiency and computability. Chapter 3 also discusses a Bayesian solution to

the two-equation model with aggregated data. The proposed Gibbs sampler is most useful in

flexible settings when the likelihood function does not satisfy the separability condition. For

models without analytic solutions, Monte Carlo studies show that the Bayesian estimator is

more robust and less sensitive to the initial values.

Chapter 4 addresses the finite sample bias induced by the monotone instrumental variables

models, which feature a supremum operator in the lower bound and an infimum operator in the

upper bound. However, when sampling variation is taken into account, the analogue estimate of

the lower bound is biased upwards and upper bound biased downwards, resulting in estimates

that are narrower than the true bounds. We first propose a conservative estimator which is

biased in the opposite but more favorable direction. Then under a polynomial approximation

assumption, we show the mechanism of the parametric bootstrap correction procedure, which

can reduce but not eliminate the bias with a possibility of overcorrection. The inadequacy of

the single bootstrap motivates us to pursue higher level bootstraps, which are shown to be

able to further reduce the bias. Furthermore, a simultaneous simulation strategy can be used

to make multi-level bootstraps computationally feasible. Lastly, we apply our estimators to a

disability misreporting problem in health economics. Both the conservative estimator and the

multi-level bootstrap corrected estimator work well.

Chapter 5 concludes the dissertation by explaining the limitations of the proposed ap-

proaches and suggesting some directions for future research.
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CHAPTER 2. VECTOR AUTOREGRESSION WITH VARIED

FREQUENCY DATA

2.1 Introduction

The Vector Autoregression (VAR) proposed by Christopher Sims (1980) is a workhorse

model for forecasting as well as studying cause and effect in the macroeconomy. An autore-

gression model implicitly assumes data are sampled at the same frequency since variables at

date t are regressed on variables dated at t − 1, t − 2, etc. However, macroeconomic data are

not always observed at a uniformed frequency. First, each series can be sampled at its own

frequency. For example, the best available data of GDP is quarterly, while that of the CPI is

monthly, that of financial asset returns might be daily or more frequent. Second, for a given

variable, recent data may be observed at a higher frequency while historical data are coarsely

sampled. For instance, quarterly GDP data are not available until 1947.

In the presence of varied frequency data, a VAR practitioner usually aligns variables either

downward by aggregating the data to a lower frequency or upward by interpolating the high

frequency data with heuristic rules such as polynomial fillings. Downward alignment discards

valuable information in the high frequency data. Furthermore, temporal aggregation can change

the lag order of ARMA models (Amemiya and Wu, 1972), reduce efficiency in parameter

estimation and forecast (Tiao and Wei, 1976), affect Granger-causality and cointegration among

component variables (Marcellino, 1999), induce spurious instantaneous causality (Breitung and

Swanson, 2002), and so on. Silvestrini and Veredas (2008) provide a comprehensive review on

the theory of temporal aggregation. On the other hand, upward alignment on the basis of ad hoc

mathematical procedures is also problematic. Pavia-Miralles (2010) surveys various methods

of interpolating and extrapolating time series. The problem is that by using a VAR model
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we acknowledge high frequency data are generated by that model. However, the interpolation

is not based on the multivariate model that generates the data, but on other heuristic rules,

which inevitably introduces noises, if not distortion, to the data.

Frequency mismatch is essentially a missing data problem in which some high frequency data

are unobservable. An effective way to handle missing data in linear time series models is to use

the state space representation and apply the Kalman filter. Jones (1980) pioneers this approach

by writing an ARMA model in the state space form, skipping the missing values by setting the

updated states equal to one-period predicted states. The Kalman filter effectively marginalizes

the missing data out of the likelihood function and obtains the likelihood of observed data in

its prediction error decomposition form.

There are other methods handling missing data in time series. One sensible approach is to

fill the missing data with an arbitrary value and meanwhile include an additive outliers dummy.

Gomez et al. (1998) and Proietti (2008) show the connections between the outliers approach

and the Kalman filter solution. Another approach is to treat (at least superficially) the miss-

ing values as if they were unknown parameters. Some variants of expectation-maximization

algorithm may be adopted for parameter estimation. See Sargan and Drettakis (1974), Pena

and Tiao (1991), Stoica et al. (2005) for discussions. The third approach is based on moments

derived from the Yule-Walker equations (Chen and Zadrozny, 1998). In the presence of sys-

tematic missing data not all moments are estimable, but some computable analogue moments

can be used to estimate parameters in a generalized method of moments framework.

In this paper, we discuss the estimation strategy of a special type of missing data problem,

namely temporal aggregation. Any scenario of high frequency data lost can be called missing

data, but temporal aggregation also features observation on the sum or average of these lost

high frequency data. For example, flow variables such as quarterly GDP is the sum of the latent

“monthly GDP” in a quarter. Stock variables such as the monthly CPI are more reasonably

viewed as an average of the latent “weekly CPI” in a month instead of the price level in the

last week of a month.1

1in the literature, stock variables are defined as those sampled every k periods from the latent high frequency
variables. The examples provided for stock variables are “rates and indexes” such as interest rate, unemployment
rate and CPI (Silvestrini and Veredas, 2008). However, all of them seem to be generated by averaging the latent
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In the literature, the only available method to handle temporal aggregation is through

the Kalman filter. The seminal paper of Harvey and Pierse (1984) outlines the state space

representation of an ARMA model subject to temporal aggregation. The idea is to enlarge the

state vector by including recent disaggregated (high frequency) variables, so that the observed

aggregated (low frequency) variables can be expressed as the sum of latent states. The mixed

frequency VAR and a related factor model have been explored by Zadrozny (1988), Mittnik

and Zadrozny (2004), Mariano and Murasawa (2003, 2010), Hyung and Granger (2008), all

of which rely on the state space representation. Also note that other approaches addressing

missing data problems, such as additive outliers, missing data as parameters and Yule-Walker

moments, cannot be applied to the temporal aggregation problems, because the sum or average

of these lost high frequency data are also informative.

We contribute to the literature by handling the temporal aggregation problem from a new

perspective. The mixed frequency data provide us two pieces of information. The first is

partially observed high frequency data. The second is some low frequency data. On the one

hand, by employing an VAR model we agree that disaggregated data are generated by such

model. In other words, the disaggregated variables have a joint distribution conformable with

the autocorrelation structure of the VAR model. Therefore, we can find out the distribution of

missing high frequency data conditional on observed high frequency data. On the other hand,

the observed low frequency data impose linear constraints on the distribution of the missing

high frequency variables. Combining the two pieces of information, we can obtain an explicit

solution to both the likelihood function of observed data and the posterior latent data, without

resorting to an recursive formula offered by the Kalman filter.

The difference between our approach and the Kalman filter can be intuitively expressed as

follows. Every period there are some informative high and/or low frequency data. The Kalman

filter assimilates information date by date and consecutively updates distributions of latent

states as new information arrives. In many engineering applications of the Kalman filter such

as real-time controls, the recursiveness feature offers a great advantage in that only increments

variables in the k periods. Some financial data such as the S&P 500 index and exchange rates in a week or
month do have their last-trading-day data available, but the averaged data are offered at the same time.
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of information, rather than the whole information set, are used for predicting and updating

current latent states. However, in statistics and economics applications, the dataset containing

historical observations is usually fixed in length. If all information is readily available, why

not use information of all dates together? Our approach focuses on the joint distribution of

multiple-period disaggregated variables, which are bound by aggregated observations.

This difference also carries empirical implications. Our approach addresses data aggregation

in an explicit and straightforward manner. The setup of the model is general enough to allow

linear temporal aggregation of any types. Though for a given aggregation structure it is always

possible to design its state space representation, but the design must be tailored and finished

by the practitioners. However, our method is more friendly to users, since it only requires users

to provide the data (say, in a spreadsheet), while the estimation is as routine as a standard

VAR model.

Though our approach articulates both the likelihood and posteriors in an explicit form, we

prefer to put the estimation in a Bayesian framework. It is easier to formulate the likelihood

function than to maximize it, for a VAR model typically contains many coefficients and nu-

merical algorithms such as the quasi-Newton have limited ability to implement the maximum

likelihood estimation.2 The advantage of adopting the Bayesian framework is that the Gibbs

sampler disentangles two distinct tasks: i) estimating model parameters conditional on com-

plete data; ii) decoding latent variables conditional on model parameters. The large number of

parameters pose little computational challenges in that they are handled in a linear regression

model if complete data were observed. As for decoding latent variables, recently Viefers (2011)

uses the Kalman filter to sample the smoothed disaggregated variables, while we articulate the

posterior conditional distribution of disaggregated variables explicitly as a multivariate normal

distribution subject to several linear constraints.

Our idea of sampling latent variables is somewhat close to a Bayesian estimation of the VAR

2As is noted by Chen and Zadrozny (1998), Kalman filter method may perform poorly or not at all on a
larger model. In applications, variables included need to be carefully selected; numerical maximization methods
need to be carefully designed, and the initial values need to be carefully set. Many authors find it crucial to
demean the data before applying the Kalman filter. Mittnik and Zadrozny (2004, p.7) report that “the MLE
was not automatic and needed intervention”. Aruoba and Scotti (2009) discuss in detail the two steps they use
to select the initial values before applying the BFGS numerical maximization. Mariano and Murasawa (2010)
use the EM algorithm to obtain an initial estimate and then switch to the quasi-Newton method.
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model with mixed or irregular spaced data proposed by Chiu, Eraker, Foerster, Kim, and Seoane

(2011, hereafter CEFKS). However, our econometric model and sampling techniques have two

genuine differences from those in CEFKS. First, CEFKS assume that lower-frequency data are

the result of sampling every k periods from the high frequency variable. In other words, they

address a traditional missing data problem without temporal aggregation. Therefore, their pos-

terior conditional distribution of latent states should be an unconstrained multivariate normal

distribution. Second, in the CEFKS sampler, single-period (say, date t) latent disaggregated

data are drawn conditional on all other latent values. In a VAR(1) model, two neighbors (that

is, values in date t−1 and t+ 1) are relevant. Though this is a valid sampler, the excess length

of the MCMC chain might result in a slow mixing. Our method is to sample latent variables

either as a whole or in blocks, where the block size is at the discretion of the user so as to reach

a balance between the sampling speed and efficiency.

Lastly, we want to briefly compare our approach with a popular model that handles mixed

frequency data, namely the Mi(xed) Da(ta) S(ampling), or MIDAS, regression introduced by

Ghysels et al. (2007), Andreou et al. (2010). The MIDAS regression projects high frequency

data onto low frequency data with a tightly parameterized weight scheme. Though the MIDAS

regression originally focuses on the financial volatility prediction (e.g., Ghysels et al., 2006), it

quickly gains popularity among macroeconomists for improving the real-time forecast of key

economic variables. See Clements and Galvao (2008, 2009), Marcellino and Schumacher (2010),

and Kuzin et al. (2011) for applications.

In the MIDAS regression, the parsimonious declining weights, such as Almon lag poly-

nomial or normalized Beta density, impose a priori structure on the decaying pattern of the

regression coefficients. It is true that such a structure prevents parameter proliferation when

an aggregation cycle is long, say using daily variables to predict quarterly outcomes. However,

for many macroeconomic data the aggregation cycle is relatively short, say monthly-quarterly,

or quarterly-annual aggregations. It is both feasible and sensible to adopt a fully data-driven

dynamic model like the varied frequency VAR.

In addition, the MIDAS regression is raised mainly in the context of economic forecasting.

The VAR, however, can be used for both forecasting and characterizing dynamic relations
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among macroeconomic variables. Once the parameters in the reduced-form VAR are routinely

estimated, it can be restored to a structural model with suitable identification constraints

coming from the economic theory. Furthermore, the VAR with varied frequency data effectively

weakens short-run identification assumptions such as zero contemporaneous effects, since it

operates on an autoregression with higher frequency data and contemporaneity means a shorter

time interval.

The rest of the paper is organized as follows. Section 2.2 specifies of the model. Section 2.3

explains our algorithm to decode latent variables and Section 2.4 compares our method with the

Kalman filter solution. Section 2.5 proposes an alternative strategy to sample latent variables

block by block. Section 2.6 extends the baseline econometric model to various aggregation

types other than simple summation and averaging. Section 2.7 illustrates our approach by a

structural VAR model with short-run economic constraints to identify monetary policy shocks.

Section 2.8 concludes the paper.

2.2 The model

Assume the k dimensional latent {Y∗t }
T
t=1 follow a stationary reduced-form VAR(p) process:

Y∗t = c +

p∑
i=1

ΦiY
∗
t−i + εt,

where εt ∼ N (0,Ω). The reference time unit is t, which indexes the highest frequency data in

the VAR system. The (column) vector Y∗t is unobservable since some of the component series

may be observed at some lower frequencies and are allowed to change sampling frequencies

at any time. Our model is application-oriented and supports varied frequency data of all

types. At this level of generality, we must specify a book-keeping convention of observed data.

Let {Y ∗t }
T
t=1 be a component series (say, the first variable) in the VAR system. Suppose in some

time interval [a, b], 1 ≤ a ≤ b ≤ T , a, b ∈ N, disaggregated latent values Y ∗a , Y
∗
a+1, ..., Y

∗
b−1, Y

∗
b

are aggregated into a single observable variate Y a,b ≡
∑b−a

j=0 Y
∗
a+j . This interval is called an

aggregation cycle. We then construct a data series {Yt}Tt=1 such that Ya = Ya+1 = ... =

Yb−1 = N.A. and Yb = Y a,b. As a special case, a = b implies the disaggregated value (highest
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frequency data) is observed. The data series {Yt}Tt=1 contains both observed data and the

aggregation structure, since by counting a run of N.A. entries preceding a data point reveals

an aggregation cycle. Sometimes high frequency data are grouped into low frequency data by

averaging instead of summation, say Y a,b ≡ 1
b−a+1

∑b−a
j=0 Y

∗
a+j . In that case, we simply record

Yb = (b− a+ 1)Y a,b so that it becomes equivalent to an aggregation by summation. More

complicated data averaging types, such as weighed, noisy, missing and nonlinear aggregation,

will be discussed in Section 2.6. In fact, this book-keeping convention is a natural way to restore

data of different frequencies. Suppose we mostly collect monthly variables but one variable is

observed quarterly. In a spreadsheet, it is natural to put these quarterly observations every

three entries.

Repeat the above process for each of the k component variables in the VAR system, we

obtain k data series. A k-by-T data matrix Y is constructed by pooling all the data series.

Each row is a component data series and each column is the data of k variables at a given time.

Clearly Y contains many N.A. entries, and we define a k-by-T logical matrix E such that the

(i, j) entry of E equals zero if the corresponding entry of Y is N.A., and equals one otherwise.

The notation
−→
E vectorizes the matrix E column by column, which will serve as an indexing

array to select entries of a matrix (vector) and form a submatrix (subvector). Similarly, the

operator
−→
Y vectorizes the matrix Y. Let Y∗ = (Y∗1, ...,Y

∗
T ), and

−→
Y∗ vectorizes the matrix Y∗.

Essentially our tasks are estimating model parameters Θ ≡ {c,Φ1, ...,Φp,Ω} and recovering

the latent Y∗ from the data matrix Y. A Bayesian framework is adopted since the Gibbs

sampler allows separation of these two tasks. For parameter estimation conditional on the

complete data, any method handling a standard VAR model applies. For illustration, we treat

the VAR as a linear regression by fixing the initial Y∗1, ...,Y
∗
p.

3

Denote a 1-by-(kp+ 1) vector xt =

(
1 Y∗′t−1 ... Y∗′t−p

)
, and a k-by-(kp+ 1) k block-

3Strictly speaking, the VAR model is reduced to a multiple-equation linear regression model only if we neglect
the contribution of the initial p observations to the likelihood. Otherwise the posterior conditionals of c,Φ1, ...,Φp

do not have a closed form. In the classical inference, this is also a popular estimation strategy. Hamilton (1994,
p.291) notes that “Vector autoregressions are invariably estimated on the basis of the conditional likelihood
function ... rather than the full-sample unconditional likelihood”. Maximizing the conditional likelihood is
equivalent to OLS regressions equation by equation.
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diagonal matrix Xt =


xt

. . .

xt

.

Let β = (c,Φ1, ...,Φp)
′. With a conjugate proper prior

−→
β ∼ N (µβ,Vβ), Ω−1 ∼Wishart (Ω, ν),

where the operator
−→
β vectorizes β, we have

−→
β |· ∼ N (Dβdβ,Dβ) ,

Ω−1 |· ∼Wishart
(
Ω, ν

)
,

where

Dβ =

 T∑
t=p+1

X′tΩ
−1Xt + V−1

β

−1

,

dβ =
T∑

t=p+1

X′tΩ
−1Y∗t + V−1

β µβ,

Ω =

Ω−1 +
T∑

t=p+1

(
Y∗t −Xt

−→
β
)(

Y∗t −Xt
−→
β
)′−1

,

ν = T − p+ ν.

2.3 Decoding latent variables

In this section, we describe the central step of our sampler, that is, how to sample the

latent
−→
Y∗ from its posterior conditional distribution. Before presenting our sampler formally,

we motivate our approach by a highly simplified scenario of a stationary scalar AR(1):

Y ∗t = φY ∗t−1 + εt, εt ∼ N
(
0, σ2

)
.

The time script t indexes the latent monthly variables. Suppose we only have one quarterly

observation Y 1,3 = Y ∗1 + Y ∗2 + Y ∗3 and one monthly observation Y4 = Y ∗4 . Conditional on

φ, σ2, Y 1,3, Y4 we are interested in the posterior distribution of
−→
Y∗ = (Y ∗1 , Y

∗
2 , Y

∗
3 , Y

∗
4 )′. For

conciseness, we leave conditioning on φ, σ2 implicit. By our book-keeping convention,
−→
Y =(

N.A.,N.A., Y 1,3, Y4

)′
,
−→
E = (0, 0, 1, 1)′.
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First note that suppose Y ∗1 ∼ N
(

0, σ2

1−φ2

)
, the stationary distribution of the AR(1) and

independent of future disturbances ε2, ε3, ε4, then
−→
Y∗ ∼ N (0,Γ), where the (i, j) entry of Γ

equals σ2

1−φ2φ
|i−j|. However,

−→
Y∗ is bound by two linear constraints. First, Y ∗1 + Y ∗2 + Y ∗3 must

sum up to the known Y 1,3. Second, Y ∗4 must equal to the known Y4. That implies
−→
Y∗ follows

a constrained multivariate normal distribution, which can be represented as the product of a

conditional normal and a degenerated distribution. To see this, construct a transformation

matrix such that

A =



1 0 0 0

0 1 0 0

1 1 1 0

0 0 0 1


.

Then A
−→
Y∗ =

(
Y ∗1 , Y

∗
2 , Y 1,3, Y4

)′ ∼ N
(
0, Γ̃

)
, where Γ̃= AΓA′.

It follows that

(Y ∗1 , Y
∗

2 )′
∣∣Y 1,3, Y4 ∼ N

[
Γ01Γ−1

11 ·
(
Y 1,3, Y4

)′
,Γ00 − Γ01Γ−1

11 Γ10

]
,

where Γ01 is the submatrix of Γ̃ with rows selected by 1−
−→
E (i.e., row 1 and 2) and columns se-

lected by
−→
E (i.e., column 3 and 4). The matrixes Γ00,Γ11,Γ10 are defined similarly. Practically,

in a matrix-based computational environment such as MATLAB, R or GAUSS, a submatrix

can be conveniently selected by appending a logical array (indexing vector) to a variable name.

Lastly, the distribution of
−→
Y∗
∣∣Y 1,3, Y4 can be decomposed as the product of (Y ∗1 , Y

∗
2 )′
∣∣Y 1,3, Y4

and (Y ∗3 , Y
∗

4 )′
∣∣Y ∗1 , Y ∗2 , Y 1,3, Y4 , but the latter is degenerated since Y ∗3 = Y 1,3 − Y ∗1 − Y ∗2 and

Y ∗4 = Y4. So the problem of finding the posterior conditional distribution of
−→
Y∗ is resolved.

Now we present the general results on decoding the latent
−→
Y∗.

Rewrite the original VAR(p) into a giant VAR(1) system by defining

Z∗t =


Y∗t − µ1

...

Y∗t−p+1 − µ1

 ,F =

 Φ

C

 , et =

 εt

0k(p−1),1



where µ1 = (Ik −
∑p

i=1 Φi)
−1

c, Φ = (Φ1, ...,Φp), C =

(
Ik(p−1) 0k(p−1),k

)
. So we have

Z∗t = FZ∗t−1 + et,
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and et ∼ N (0,∆), ∆ =

 Ω

0k(p−1),k(p−1)

, t = p, ..., T .

Note that the initial p observations are embodied in the vector Z∗p.

Proposition 2.1. Assume the eigenvalues of F all lie inside the unit circle and the initial values

Z∗p ∼ N (0,B), where B = FBF′+ ∆. Also assume Z∗p and future disturbances ep+1, ..., eT are

independent. Then {Z∗t }
T
t=p are strictly stationary with

Z∗p

Z∗p+1

· · ·

Z∗T


∼ N


0,



B (FB)′ · · ·
(
FT−pB

)′
FB B · · ·

(
FT−p−1B

)′
...

. . .

FT−pB FT−p−1B · · · B




,

and
−→
Y∗ ∼ N (µ,Γ), where µ= (µ′1, ...,µ

′
1)′. The kT -by-kT covariance matrix Γ is given by

Γ =



Γ0 Γ′1 ... Γ′T−1

Γ1 Γ0 ... Γ′T−2

...

ΓT−1 ΓT−2 ... Γ0


,

where Γj = E

[
(Y∗t − µ1)

(
Y∗t−j − µ1

)′]
=
∑p

i=1 ΦiΓj−i with
(
Γ′p−1, ...,Γ

′
0

)′
being the last k

columns of B.

Proof. See appendix.

On the one hand, the latent
−→
Y∗ is regulated by the covariance structure of the VAR(p)

process. Proposition 2.1 suggests that the latent
−→
Y∗ could be sampled directly from N (µ,Γ)

if the aggregated data were not known. On the other hand, our knowledge on the aggregated

data further sharpens our understandings on
−→
Y∗, leading to a constrained multivariate normal

distribution which can be decomposed into a conditional normal distribution and a degenerated

distribution. The motivating example of AR(1) demonstrates how to connect the aggregated

and disaggregated data with a transformation matrix. In the general case, the kT -by-kT

transformation matrix A can be constructed by examining the logical matrix E that contains
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the aggregation structure. First set A to be a zeros matrix. Then we examine each row of E

and search for the pattern of “a run of zeros ending with a one”. Suppose the (i, j) entry of

E is a one preceded by a run of M zeros, we then add M + 1 ones to A. The locations in A

are row (j − 1) k + i, column (j − 1) k + i−mk, m = 0, 1, ...,M . Note that M = 0 is allowed,

which simply means a disaggregated value (highest frequency data) is observed.

The new series A
−→
Y∗ transforms the original series

−→
Y∗ in such a way that for a (M + 1)-

period temporal aggregation, the first M variates are retained, while the last one is replaced

by the sum of the variates in the aggregation cycle. For example, Let {Y ∗t }
T
t=1 be the ith

(i = 1, ..., k) component series in the VAR system. Suppose the aggregation cycle is [a, a+M ],

1 ≤ a ≤ T −M . Then in row (a− 1) k+ i, ..., (a+M − 2) k+ i, (a+M − 1) k+ i of
−→
Y∗ reside(

Y ∗a , ..., Y
∗
a+M−1, Y

∗
a+M

)
, while the corresponding entries in A

−→
Y∗ are

(
Y ∗a , ..., Y

∗
a+M−1, Y a,a+M

)
,

where Y a,a+M =
∑M

j=0 Y
∗
a+j . Conditional on the observed aggregated data Y a,a+M , the disag-

gregated variables
(
Y ∗a , ..., Y

∗
a+M−1

)
will follow a conditional normal distribution. To be exact,

A
−→
Y∗ ∼ N (Aµ,AΓA′), and

−→
Y∗0

∣∣∣−→Y,Θ ∼ N
[
η0 + Γ01Γ

−1
11

(−→
Y1 − η1

)
,Γ00 − Γ01Γ

−1
11 Γ10

]
,

where
−→
Y∗0 is the subvector of A

−→
Y∗ selected by the logical vector 1 −

−→
E , namely the latent

disaggregated variates. Similarly,
−→
Y1 is the subvector of A

−→
Y∗ selected by

−→
E , namely the

observed aggregated variates. Where is the realized values of
−→
Y1? They are the subvector of

−→
Y selected by

−→
E . As for the conditional mean and variance parameters, η0 and η1 are two

subvectors of Aµ selected by 1 −
−→
E and

−→
E respectively. Γ01 is the submatrix of AΓA′ with

rows selected by 1 −
−→
E and columns selected by

−→
E . The matrixes Γ11,Γ00,Γ10 are defined

similarly.

Note that in the transformation we squeezed out a disaggregated variate at the end of

the aggregation cycle, and replaced it with an aggregated data. Those squeezed-out variates,

denoted as
−−→
Y∗−1, correspond to the subvector of

−→
Y∗ selected by

−→
E . However,

−−→
Y∗−1

∣∣∣−→Y∗0,−→Y,Θ

is degenerate, since it must equal to the difference between the aggregated value and the sum

of the rest disaggregated values.

The conditional normal
−→
Y∗0

∣∣∣−→Y,Θ plus the degenerated
−−→
Y∗−1

∣∣∣−→Y∗0,−→Y,Θ fully characterize
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the distribution of
−→
Y∗
∣∣∣−→Y,Θ , for

(−→
Y∗0,
−→
Y∗
)

is a partition of
−→
Y∗ (note that

−→
Y∗0 has another

identity, namely the subvector of
−→
Y∗ selected by 1 −

−→
E ). That finishes the Gibbs sampler to

the latent variables.

As a special case, the above procedure accommodates one-period aggregation, in which a

disaggregated value (highest frequency data) is observed. Let Y ∗t be such an observed disag-

gregated value. In the step of calculating
−→
Y∗0

∣∣∣−→Y,Θ , the variable Y ∗t is squeezed out from
−→
Y∗0,

but counted as a member of
−→
Y to sharpen our understandings on other latent variables. In the

step of calculating
−−→
Y∗−1

∣∣∣−→Y∗0,−→Y,Θ , the variable Y ∗t belongs to
−−→
Y∗−1 and equals to the realized

value of itself.

2.4 A comparison with the Kalman filter

The state space framework with the Kalman filter is powerful enough to bridge any fre-

quency mismatch. Kalman filter can handle temporal aggregation for the sure, though it is not

necessarily the best solution to the current problem.

Consider again the AR(1) example with one quarterly observation Y 1,3 and one monthly

observation Y4 as in Section 2.3. The state space representation of that model consists of a

transition equation and a measurement equation such that

ξt = Gξt−1 + ut,

zt = Htξt.

where in the transition equation the states ξt =
(
Y ∗t , Y

∗
t−1, Y

∗
t−2

)′
, G =


φ 0 0

1 0 0

0 1 0

, ut =

(εt, 0, 0)′, t = 1, 2, 3, 4; In the measurement equation, z3 = Y 1,3, z4 = Y4, H3 = (1, 1, 1),

H4 = (1, 0, 0) while z1, z2,H1,H2 are empty4. The initial distribution of ξ0 is conformable

with the stationary AR(1) process, that is, ξ0 ∼ N (0,B), where B = GBG′ + ∆, and ∆ =

diag
(
σ2, 0, 0

)
.

4Alternatively, empty state vector can be circumvented by letting z1, z2 be some exogenous random variables
whose data generating processes are unrelated with model parameters so that the likelihood is only shifted by a
constant (see Mariano and Murasawa, 2003). The only advantage of introducing such artificial random variables
is to keep constant the size of the measurement vector.
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One way to describe the Kalman filter is to break the recursion into predicting and updating

steps. Due to no information in date 1 and 2, the updating step are skipped and both ξ1 and

ξ2 follow N (0,B). Then predict ξ3 ∼ N (0,B), z3 ∼ N (0,H3BH′3) and use realized z3 to

update ξ3 |z3 ∼ N
(
ξ̂3|3 ,P3|3

)
, where

ξ̂3|3 = BH′3
(
H3BH′3

)−1
z3,

P3|3 = B−BH′3
(
H3BH′3

)−1
H3B.

In date 4, first predict ξ4 |z3 ∼ N
(
ξ̂4|3 ,P4|3

)
and z4 |z3 ∼ N

(
H4ξ̂4|3 ,H4P4|3 H′4

)
, where

ξ̂4|3 = Gξ̂3|3 ,

P4|3 = GP3|3 G′ + ∆.

Then use realized z4 to update ξ4 |z3, z4 ∼ N
(
ξ̂4|4 ,P4|4

)
, where

ξ̂4|4 = ξ̂4|3 + P4|3 H′4
(
H4P4|3 H′4

)−1
(
z4 −H4ξ̂4|3

)
,

P4|4 = P4|3 −P4|3 H′4
(
H4P4|3 H′4

)−1
H4P4|3 .

After the long recursion, we obtain the likelihood function, which is the product of the

densities of z3 and z4 |z3 . Note that the original system is a scalar AR(1), but in the state

space form we expand the state vector ξt to three dimensions with a 3-by-3 transition matrix

the G, which consists of only one “material element” φ but many “auxiliary elements” like zeros

and ones. Furthermore, the recursive formula yields an illusion that the likelihood function is in

a complicated form. However, the explicit likelihood is not only tractable but also simple. The

spirit of our approach is to explore the joint distribution of latent variables of multiple periods.

Since (Y ∗1 , Y
∗

2 , Y
∗

3 , Y
∗

4 )′ is multivariate normal, by a linear transformation
(
Y ∗1 , Y

∗
2 , Y 1,3, Y4

)′
is also multivariate normal with N

(
0, Γ̃

)
, where Γ̃ has been defined in Section 2.3. The

likelihood function of the observed variates
(
Y 1,3, Y4

)′
is a multivariate normal density with

the covariance matrix given by the last two rows and columns of Γ̃.

Similarly, to find the posterior distribution of the latent states, the Kalman filter offers a

smoothing recipe. ξ4 |z3, z4 has already been obtained in the forward recursion. ξ3 |ξ4, z3, z4
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has the same distribution as ξ3 |ξ4, z3 , that is N
(
ξ̂3|4 ,P3|4

)
, where

ξ̂3|4 = ξ̂3|3 + P3|3 G′
(
P4|3

)−1
(
ξ4 − ξ̂4|3

)
,

P3|4 = P3|3 −P3|3 G′
(
P4|3

)−1
GP3|3 .

The distribution of ξ4 |z3, z4 and ξ3 |ξ4, z3, z4 are enough to characterize the posterior distri-

bution of (Y ∗1 , Y
∗

2 , Y
∗

3 , Y
∗

4 )′. However, a technical problem is that the covariance matrix of

ξ4 |z3, z4 is not of full rank (the first column is zeros) and the covariance matrix of ξ3 |ξ4, z3, z4

is an entire zeros matrix. This is caused by two facts: i) some components in the state vector

are actually observed; ii) state vectors of different periods have overlapping components. The

problem can be solved by deleting the non-random components, though it inevitably increases

the implementation complexity. The advantage of our approach is the transparency of the pos-

terior distribution. As is stated explicitly in Section 2.3, the posterior (Y ∗1 , Y
∗

2 , Y
∗

3 , Y
∗

4 )′ follows

a multivariate normal distribution subject to two constraints, which can be decomposed into a

bivariate normal in terms of (Y ∗1 , Y
∗

2 )′
∣∣Y 1,3, Y4 and the degenerated (Y ∗3 , Y

∗
4 )′
∣∣Y ∗1 , Y ∗2 , Y 1,3, Y4 .

In a general VAR(p) model with linear temporal aggregation of any types, the explicit form

of the likelihood still exists. The disaggregated variables follow a joint multivariate normal

distribution conformable to the VAR process. The observed variables are linear combinations

of those disaggregated variables. Since the normality is preserved under linear transformations,

the likelihood function of observed variates will take the form of a multivariate normal density.

Actually its form has already given in Section 2.3. Note that A
−→
Y∗ ∼ N (Aµ,AΓA′) and

the observed variates are those elements of A
−→
Y∗ selected by

−→
E . It follows that the likelihood

function is a multivariate normal density with mean η1 and covariance matrix Γ11.

2.5 Gibbs sampler with Blocks

The sampling procedure in Section 2.3 allows us to draw the latent variables all at once.

However, if we have a large dataset, the procedure requires manipulating large matrixes and

their inversions, which poses computational challenges. In this section we propose an alternative

sampler which divides latent variables into blocks. It speeds up the sampler and saves computer

memories, at the price of increasing the length of the MCMC chain. The idea of this approach
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is to explore the Markov property to simplify conditional distributions and thus reduce the

size of matrixes. The following proposition explains the (high order) Markov property of the

VAR(p) process.

Proposition 2.2. Suppose {Y∗t }
T
t=1 follow a VAR(p) process, then

p
(
Y∗s , ...,Y

∗
t

∣∣Y∗1, ...,Y∗s−1,Y
∗
t+1, ...,Y

∗
T

)
= p

(
Y∗s , ...,Y

∗
t

∣∣Y∗s−p, ...,Y∗s−1,Y
∗
t+1, ...,Y

∗
t+p

)
,

for all 1 ≤ s ≤ t ≤ T and s, t ∈ N. Over-ranged variables Y∗0,Y
∗
−1, ... and Y∗T+1,Y

∗
T+2, ... are

treated as N.A..

Proof. See appendix.

To fix ideas on how to use Proposition 2.2 in the Gibbs sampler with blocks, consider again

the AR(1) example in Section 2.3:

Y ∗t = φY ∗t−1 + εt, εt ∼ N
(
0, σ2

)
.

Suppose we observe two quarterly observations Y 1,3 = Y ∗1 +Y ∗2 +Y ∗3 , Y 4,6 = Y ∗4 +Y ∗5 +Y ∗6

and one monthly observation Y7 = Y ∗7 . Conditional on φ, σ2, Y 1,3, Y 4,6, Y7 we are interested in

the posterior distribution of
−→
Y∗ = (Y ∗1 , ..., Y

∗
7 )′. If we sample the latent variates all at once, we

need to work on a 7-by-7 transformation matrix and covariance matrix.

Now we partition the seven latent variables into three blocks and consecutively sample vari-

ates in one block conditional on other two blocks. We need to specify the posterior conditionals

of

(Y ∗1 , Y
∗

2 , Y
∗

3 )′
∣∣Y 1,3, Y 4,6, Y7, Y

∗
4 , Y

∗
5 , Y

∗
6 , Y

∗
7 ,

(Y ∗4 , Y
∗

5 , Y
∗

6 )′
∣∣Y 1,3, Y 4,6, Y7, Y

∗
1 , Y

∗
2 , Y

∗
3 , Y

∗
7 ,

Y ∗7
∣∣Y 1,3, Y 4,6, Y7, Y

∗
1 , ..., Y

∗
6 .

First, to sample (Y ∗1 , Y
∗

2 , Y
∗

3 )′ conditional on all other variables, we note two facts: i)

conditioning on Y 4,6 and Y7 is redundant since we already know Y ∗4 , Y
∗

5 , Y
∗

6 , Y
∗

7 ; ii) the Markov

property of the AR(1) process implies that once we know Y ∗4 , further knowledge on Y ∗5 , Y
∗

6 , Y
∗

7
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is irrelevant. So it is equivalent to work on (Y ∗1 , Y
∗

2 , Y
∗

3 )′
∣∣Y 1,3, Y

∗
4 . By a linear transformation,(

Y ∗1 , Y
∗

2 , Y 1,3, Y
∗

4

)′
follows a multivariate normal, so we first sample (Y ∗1 , Y

∗
2 )′ conditional on

Y 1,3, Y
∗

4 , and then sample the degenerated Y ∗3 , which is essentially the same as the example in

Section 2.3. This process only requires a 4-by-4 transformation matrix and covariance matrix.

Next, we consider sampling (Y ∗4 , Y
∗

5 , Y
∗

6 )′ conditional on all other variables. Again we note

two facts: i) Our knowledge on Y ∗1 , Y
∗

2 , Y
∗

3 makes Y 1,3 redundant; ii) the Markov property

implies that conditioning on Y ∗3 , Y
∗

7 is sufficient. So we work on (Y ∗4 , Y
∗

5 , Y
∗

6 )′
∣∣Y 4,6, Y

∗
3 , Y7 by

first sampling (Y ∗4 , Y
∗

5 )′
∣∣Y 4,6, Y

∗
3 , Y7 from a conditional normal distribution and then sampling

the degenerated Y ∗6 . This process only requires a 5-by-5 transformation matrix and covariance

matrix.

Third, Y ∗7
∣∣Y 1,3, Y 4,6, Y7, Y

∗
1 , ..., Y

∗
6 is degenerated since we know its realization.

This example illustrates how we simplify the posterior conditional distribution by the

Markov property, though the computational advantage is mild in this case. Now we extend this

example by assuming 100 quarterly observations, say Y 3j−2,3j , j = 1, ..., 100. Treat variables

in each aggregation cycle as a block, that is,
(
Y ∗3j−2, Y

∗
3j−1, Y

∗
3j

)
, j = 1, ..., 100. To sample each

block conditioning on all other variables, we work on Y ∗3j−2, Y
∗

3j−1, Y
∗

3j

∣∣∣Y 3j−2,3j , Y
∗

3j−3, Y
∗

3j+1

(with proper adjustment for first and last blocks). First sample Y ∗3j−2, Y
∗

3j−1, Y 3j−2,3j

∣∣∣Y ∗3j−3, Y
∗

3j+1

from a conditional normal distribution and then recover Y ∗3j by a direct subtraction. Propo-

sition 2.1 suggests the joint distribution of
(
Y ∗3j−3, Y

∗
3j−2, Y

∗
3j−1, Y

∗
3j , Y

∗
3j+1

)
is identical for all

j = 2, ..., 99 due to strict stationarity, which also implies the same form of the conditional

normal distribution can be applied to all the 98 variable blocks. This feature substantially

accelerates the sampler since most computation time is spend on calculating the conditional

variances.

Also note that the size of the block is not necessarily set to an aggregation cycle. For

example, it is legitimate to partition the series every two aggregation cycles. If the entire

series are treated as one block, we go back to the sampler specified in Section 2.3. Generally

speaking, larger block size increases computation time, but also reduces the length and improves

the mixing of the MCMC chain. The balance between the sampling efficiency and speed is at

the discretion of practitioners.
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In a general VAR(p)-based model, the blocking strategy still applies. Though the vari-

able blocks can be set arbitrarily, it is natural to set the dividing lines at the end of the

aggregation cycle. Let E,A,µ,Γ as defined in Section 2.3. Suppose we intend to sample(
Y∗t ,Y

∗
t+2...,Y

∗
t+j

)
in one block, conditional on disaggregated draws of all other blocks. The

Markov property of the VAR(p) model suggests that we only need to use the joint distribution

of
(
Y∗t−p, ...,Y

∗
t ...,Y

∗
t+j , ...,Y

∗
t+j+p

)
to formulate the conditional normal distribution. Let E0

be a k-by-T logical matrix of zeros, except that column t to t+j are equal to the corresponding

columns in 1 − E. Let E1 be a k-by-T logical matrix of zeros, except that column t − p to

column t−1 are ones, column t to t+j are identical to the corresponding columns in E, column

t + j + 1 to column t + j + p are ones. Then we can use the vectorized
−→
E 0 and

−→
E 1 to select

submatrixes to form the conditional normal distribution:

−→
Y∗0

∣∣∣−→Y∗1,−→Y,Θ ∼ N
[
η0 + Γ01Γ

−1
11

(−→
Y∗1 − η1

)
,Γ00 − Γ01Γ

−1
11 Γ10

]
,

where
−→
Y∗0,
−→
Y∗1 are the subvectors of A

−→
Y∗ selected by the logical vectors

−→
E 0 and

−→
E 1 respectively,

η0 and η1 are two subvectors of Aµ selected by
−→
E 0 and

−→
E 1 respectively. Γ01 is the submatrix

of AΓA′ with rows selected by
−→
E 0 and columns selected by

−→
E 1. The matrixes Γ11,Γ00,Γ10 are

defined similarly. Lastly, the squeezed out disaggregated values can be recovered by a direct

subtraction.

2.6 Other aggregation types

Macroeconomic data may exhibit more complicated aggregation types other than summa-

tion and simple average. In this section, we extend the model to various aggregation types that

an empirical researcher may encounter.

2.6.1 Weighed aggregation

In the baseline model, the time interval [t, t+ 1] is equidistant over time. However, calender

days vary in a month, and working days are affected by holidays. Suppose latent daily values of

some variable are simple-averaged to generate latent quarterly data and observable annual data.

Assume there are 66, 66, 66, 60 working days in the four quarters, and then the latent quarterly



www.manaraa.com

21

values {Y ∗t }
T
t=1 are linked to the annual data

{
Y 4i+1,4i+4

}T/4−1

i=0
by the relation Y 4i+1,4i+4 =

66
252Y

∗
4i+1 + 66

252Y
∗

4i+2 + 66
252Y

∗
4i+3 + 60

252Y
∗

4i+4.

In a general setting, let {Y ∗t }
T
t=1 be a component series in the VAR system. Suppose

in an aggregation cycle [a, b], disaggregated latent values Y ∗a , Y
∗
a+1...Y

∗
b−1, Y

∗
b are aggregated

into an observed data Y a,b ≡
∑b−a

j=0 ωa+jY
∗
a+j , where {ωt}Tt=1 is a deterministic weight series.

In the above example, the weight series looks like
{
..., 66

252 ,
66
252 ,

66
252 ,

60
252 , ...

}
. The data series

{Yt}Tt=1 and the matrixes Y,Y∗,E are constructed in the same way as in Section 2.3, but the

transformation matrix A needs to incorporate the weights information. The matrix A can be

constructed based on a kT -by-kT matrix of zeros. Then we examine the logical matrix E row

by row to modify A as appropriate. Suppose the (i, j) entry of E is a one preceded by a run

of M zeros. By reading the weight series {ωt}Tt=1 of variable i, we extract ωj , ωj−1, ..., ωj−M

and place them to A. The locations in A are row (j − 1) k + i, column (j − 1) k + i − mk,

m = 0, ...,M . The rest sampling procedure remains the same.

2.6.2 Differenced data and weighed aggregation

The VAR model in use is stationary. However, many macroeconomic variables contain unit

roots. It is common to put the first-differenced variables in the VAR system, though in the

current model cointegration relations and error correction terms are not included. The model

with cointegration is left for future research.

Consider an example. Let {Y ∗t }
T
t=1 be the latent monthly GDP series and we actually put

∆Y ∗t ≡ Y ∗t − Y ∗t−1 as a component variable in the VAR model. We observe the quarterly

GDP series Y t,t+2 = Y ∗t + Y ∗t+1 + Y ∗t+2, t = 1, 4, 7, .... Define the quarterly-differenced data

∆3Y t,t+2 = Y t,t+2− Y t−3,t−1. The observable quarterly-differenced data and the unobservable

monthly-differenced data are linked by the relation

∆3Y t,t+2 =
2∑
j=0

(
Y ∗t+j − Y ∗t−3+j

)
=

2∑
j=0

(
∆Y ∗t+j + ∆Y ∗t−1+j + ∆Y ∗t−2+j

)
= ∆Y ∗t+2 + 2∆Y ∗t+1 + 3∆Y ∗t + 2∆Y ∗t−1 + ∆Y ∗t−2.
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In other words, the observed quarterly GDP growth series is a weighed sum of the unobserved

monthly GDP growth series. Similarly, suppose the aggregated value is formed by taking

average instead of summation, that is, Y t,t+2 = 1
3

(
Y ∗t + Y ∗t+1 + Y ∗t+2

)
. The quarterly-monthly

differenced data are linked by the relation

∆3Y t,t+2 =
1

3
∆Y ∗t+2 +

2

3
∆Y ∗t+1 + ∆Y ∗t +

2

3
∆Y ∗t−1 +

1

3
∆Y ∗t−2.

In principle, the approach handling weighed averaged data in the previous subsection applies

to the current problem. We just put quarterly differenced data in the data series {Yt}Tt=1 every

three entries (with other entries being N.A.). As for the transformation matrix A, suppose we

are reading row i and column j of E and (i, j) is a non-zero entry. Then for summation-type

aggregation we place (1, 2, 3, 2, 1) to A at row (j − 1) k + i and column (j − 1) k + i − mk,

m = 0, ..., 4. The rest sampling procedure remains the same.

In practice, it is preferable to estimate the differenced-data model using a block Gibbs

sampler.5 However, in this case the block sampler differs slightly from the previous one, since

the aggregation of differenced data spans across two aggregation cycles. This feature implies

that two aggregated data are relevant when we sample a block of variables in an aggregation

cycle.

For illustration, consider again a monthly AR(1) model such that

∆Y ∗t = φ ·∆Y ∗t−1 + εt,

while only quarterly-differenced variables ∆3Y t,t+2, t = 4, 7, 10, ... are observed. Suppose

we intend to sample the block
(
∆Y ∗t ,∆Y

∗
t+1,∆Y

∗
t+2

)
conditional on all the other monthly-

differenced data as well as quarterly-differenced data. In this case, two aggregated values

5It seems that there are some numerical issues if the disaggregated, differenced data are sampled all at once.
Consider a univariate AR(1) with φ = 0.5, σ2 = 1. Let the covariance matrix of T observations be Γ, where the

(i, j) entry of Γ equals σ2

1−φ2 φ
|i−j|. Construct the transformation matrix A with weights (1, 2, 3, 2, 1) assigned

as appropriate. The transformed covariance matrix AΓA′ is positive definite in theory. However, it seems that
when T is larger than 100, MATLAB cannot perform the cholesky decomposition and produces a non-positive
definite error, though we know theoretically the cholesky factor in this case is AL, where LL′ = Γ. The puzzle is
that regardless of T MATLAB can always cholesky decompose Γ and AΓA′ for level-data aggregation specified
in the previous section. We are not aware of the source of this numerical problem, so currently we estimate
the differenced-data model using the blocking strategy, in which the transformed covariance matrix is relatively
small in size and no obvious numerical problem is detected.
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∆3Y t,t+2, ∆3Y t+3,t+5 bind disaggregated
(
∆Y ∗t ,∆Y

∗
t+1,∆Y

∗
t+2

)
such that

∆Y ∗t+2 + 2∆Y ∗t+1 + 3∆Y ∗t = ∆3Y t,t+2 − 2∆Y ∗t−1 −∆Y ∗t−2,

2∆Y ∗t+2 + ∆Y ∗t+1 = ∆3Y t+3,t+5 −∆Y ∗t+5 − 2∆Y ∗t+4 − 3∆Y ∗t+3.

In others words,
(
∆Y ∗t ,∆Y

∗
t+1,∆Y

∗
t+2

)
follows a condition normal distribution subject to two

linear constraints. So we first explore the Markov property of the AR(1) process and use

the (unconditional) joint normal distribution of
(
∆Y ∗t−1,∆Y

∗
t ,∆Y

∗
t+1,∆Y

∗
t+2,∆Y

∗
t+3

)
to find

out the distribution of
(
∆Y ∗t ,∆Y

∗
t+1,∆Y

∗
t+2

)
conditional on all the other disaggregated data.

Then we build a transformation matrix with the purpose of taking
(
∆Y ∗t ,∆Y

∗
t+1,∆Y

∗
t+2

)
into(

∆Y ∗t+2 + 2∆Y ∗t+1 + 3∆Y ∗t ,∆Y
∗
t+1, 2∆Y ∗t+2 + ∆Y ∗t+1

)
. Note that the first term has a realized

value ∆3Y t,t+2−2∆Y ∗t−1−∆Y ∗t−2, and the third term has its realization ∆3Y t+3,t+5−∆Y ∗t+5−

2∆Y ∗t+4 − 3∆Y ∗t+3, so we first sample ∆Y ∗t+1

∣∣(∆Y ∗t+2 + 2∆Y ∗t+1 + 3∆Y ∗t
)
,
(
2∆Y ∗t+2 + ∆Y ∗t+1

)
and then sample the degenerated ∆Y ∗t+2, 3∆Y ∗t .

In a general VAR(p)-based model with differenced data, the blocking strategies still applies.

First, choose a block size. Second, use Markov property of the VAR(p) to find out the distri-

bution of disaggregated variables within the block conditional on all the other disaggregated

variables. Third, find out all the aggregation constraints that bind the variables within the

block. Fourth, make linear transformations to accommodate those constraints. Fifth, sample

disaggregated variables from a conditional normal distribution and degenerated distribution.

2.6.3 Data revision and noisy aggregation

If the VAR model is mainly used for real-time forecasting, it is necessary to incorporate

all the recent data. However, some latest macroeconomic data might be less accurate and

subject to revision. In that case the most recent aggregated data might be viewed as the

summation of the latent disaggregated values plus a noise. The noisy aggregation can be

modeled as follows. Let {Y ∗t }
T
t=1 be a component series. Suppose in some time interval [a, b]

disaggregated latent values Y ∗a , Y
∗
a+1...Y

∗
b−1, Y

∗
b are grouped into an aggregated observed data

Y a,b ≡ ua+
∑b−a

j=0 Y
∗
a+j , where ua follows an independent N (0, η) regardless of the time script a.

At a later stage, the authority revises the aggregated data so as to remove the noise ua. In other
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words, historical noises are known, leaving only the latest noise unknown. Suppose a researcher

has realizations of historical noises {ua}Ja=1 in hand. With a conjugate prior η ∼ IG (c1, c2),

the posterior conditional distribution is η ∼ IG

[
J
2 + c1,

(
c−1

2 + 1
2

∑J
a=1 u

2
a

)−1
]
. To sample the

latent disaggregated values from their posterior conditional distribution, we take the previous

draw of η as given. The data series {Yt}Tt=1 are constructed by filling in the corresponding

entries with revised data except for the most recent one with noise-ridden data. Transformation

matrix is constructed as usual, but we modify the covariance matrix of A
−→
Y∗, which is AΓA′

originally. Suppose this noise-ridden data happens to variable i at date j. By adding the

((j − 1) k + i, (j − 1) k + i) entry of AΓA′ by η, we obtain the new covariance matrix of A
−→
Y∗.

The rest sampling procedure remains the same.

2.6.4 Missing data and no aggregation

Though the missing data problem is more common in survey, industrial or regional data at

micro level, missing macroeconomic data may be present in the oldest or latest data. Consider

the real-time forecasting again. Many economic indicators are published with a time lag. At

the time when a forecasting must be made, some latest variables may be available while some

are not, hence the missing data. Our model can conveniently handle missing data by classifying

them into latent disaggregated variates block. In the data matrix Y, record the missing data

as, say, M.S.. Then define logical matrix E such that the (i, j) entry in E equals zero if the

corresponding entry in Y is N.A., and equals one if that in Y contains data, and equals two

if that in Y is M.S.. The construction of the transformation matrix A still starts from an

identity matrix and we modify it by examining E. If the (i, j) entry of E entry is zero or

two, skip and proceed to column j + 1 (or conclude this row). Otherwise, we search column

j − 1, j − 2, ... for a run of zeros and insert ones into A in the same way as before. Once the

transformation matrix is constructed, replace all the twos with zeros in E and use it to select

a submatrix or subvector. The rest sampling procedure remains the same.
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2.6.5 Logarithmic data and nonlinear aggregation

Using logarithmic variables in the VAR has many merits, but it also introduces nonlinearity

in the aggregation structure. Our model is a linear model that handles temporal aggregation

by exploring the fact that normality is preserved under linear transformations. Suppose three

monthly data are averaged into a quarterly data such that Y 1,3 = 1
3 (Y ∗1 + Y ∗2 + Y ∗3 ). If loga-

rithmic monthly variable (lnY ∗1 , lnY
∗

2 , lnY
∗

3 ) are used in the VAR system, they follow multi-

variate normal but conditional on Y 1,3 they do not, for lnY 1,3 6= 1
3 (lnY ∗1 + lnY ∗2 + lnY ∗3 ) due

to Jensen’s inequality. Mariano and Murasawa (2003, 2010), in a similar state-space model,

document this nonlinear aggregation problem and suggest redefining the disaggregated data

as the geometric mean (instead of the arithmetic mean) of the disaggregated data such that

lnY 1,3 = 1
3 (lnY ∗∗1 + lnY ∗∗2 + lnY ∗∗3 ), where {lnY ∗∗t }

T
t=1 are used as a component series in the

VAR system. Under this definition the disaggregated data cannot be interpreted as the calendar

monthly data. They only bear a statistical interpretation such that the geometric average of

latent lnY ∗∗1 , lnY ∗∗2 , lnY ∗∗3 equals to the observed lnY 1,3. Camacho and Perez-Quiros (2010)

argue that the approximation error is almost negligible if monthly changes are small and the

geometric averaging works well in practice.

2.7 An application

In this section, we applied our approach to a structural VAR model to study the dynamic

effects of monetary policy shocks. Note that the current model is essentially a reduced-form

VAR with missing disaggregated data. Once we have decoded the latent variables and estimated

the model parameters, the model is treated in the same way as a standard reduced-form VAR

model. To convert the reduced form to a structural form, economic constraints must be imposed

to identify the structural shocks. Our method is especially ideal for structural models with short

run identification constraints.

Christiano et al. (1998) propose a block diagonal recursiveness assumption to identify mon-

etary policy shocks. The variables in the VAR system are classified into three groups. The

variables in the first group are major economic indicators. The second group consists of only
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one monetary policy instrument, whose innovations reflect monetary policy shocks. Typically

this variable is the federal funds rate (FF). The third group mostly include variables reflect-

ing intermediate monetary goals. The identification assumption is that the policy instrument

has no contemporaneous effect on the variables in the first group, and the third group has no

contemporaneous effect on the previous two groups. This assumption enables a partial identi-

fication of monetary shocks by Cholesky decomposition, leaving other shocks unidentified.

We put GDP and the CPI in the first group, FF as the policy instrument and the money

stock M1 in the third group. Monthly data of the CPI, FF and M1 are available while GDP

data are quarterly. The sample period is chosen as 1974:01 to 2006:12 since there might be

structural breaks before and after that time interval. Data are Hodrick-Prescott filtered for

we are interested in the cyclical component of the data. Despite the common opinion that

many macro-variables may contain unit roots, at least in the above sample period we did not

find strong evidence against stationarity for the detrended four series. Both the ADF and

Phillips-Perron tests decisively reject the null of unit roots. So we put variables in level to the

model. As for the choice of lag length, there is a tradeoff between richer dynamics with more

lags and unreliable estimation with more parameters. In a four-variable VAR, an additional lag

means 16 more parameters. We have 396 monthly observations (132 quarterly observations).

The sample size does not permit us to include many lags. The results reported in Figure 2.1

and 2.2 correspond to a quarterly VAR with 2 lags (42 parameters) and monthly model with

6 lags (106 parameters) respectively. Results robustness is checked by varying quarterly VAR

lags from 1 to 6 and monthly model lags from 2 to 8. The dynamic patterns of the response

functions have little change, though in the higher order system the dynamic response curves

exhibit more rugs and oscillations.

Figure 2.1 and 2.2 are not directly comparable in that the short-run identification con-

straints, though in the same format, should be interpreted differently. In the quarterly data

VAR, to identify the monetary shocks we require monetary shocks have no contemporaneous

effects on the output and price in a quarter, while in the varied frequency model we only require

no such effect in a month. Clearly, the latter imposes a weaker identification assumption on the

contemporaneous effects, so there are grounds for believing Figure 2.2 presents a more reliable
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dynamic picture on how the economy responds to monetary shocks. This is a major advantage

of the varied frequency model with short-run economic identification constraints. In addition,

the model makes full use of available data of different frequencies. This is another reason we

are in favor of the varied frequency model.

As for the dynamic patterns revealed in the Figure 2.1 and 2.2, after a contractionary

monetary shock, GDP and M1 react negatively as expected, but the CPI rises steadily, a

phenomenon long documented in the literature as the price puzzle (Sims, 1992; Eichenbaum,

1992). Christiano et al. (1998) suggest including an index of sensitive commodity prices can

resolve the anomaly, a topic beyond the scope of the current paper.
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The VAR contains two lags. One key identification constraint is monetary shocks have no

contemporaneous effects on the output and price in a quarter. The solid line plots the posterior mean

of the impulse-response function and the dotted lines are the 95% HPD credible bands. The results are

obtained from a Gibbs sampler of 200000 draws with the first half of draws burned in.

Figure 2.1 Dynamic effects of monetary policy shocks using the quarterly data VAR model
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The VAR contains six lags with monthly data except for quarterly GDP. One key identification

constraint is monetary shocks have no contemporaneous effects on the output and price in a month.

The solid line plots the posterior mean of the impulse-response function and the dotted lines are the

95% HPD credible bands. The results are obtained from a Gibbs sampler of 200000 draws with the

first half of draws burned in.

Figure 2.2 Dynamic effects of monetary policy shocks using the varied frequency VAR model
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2.8 Conclusion

The structural VAR model has been fruitfully applied in macroeconomics to unveil the

dynamic paths of economic variables responding to nominal or real shocks. Such an analysis

involves two stages in general. The first stage is to estimate a reduced-form VAR model and

invert to its moving average representation. In the second stage, restrictions are imposed

to identify structural shocks so as to conduct impulse response analysis. The second stage

embodies scientific insights of the macroeconomists and is undoubtedly the core of the VAR

analysis, while the first stage is largely statistical. However, a better estimate of the reduced-

form VAR model translates to a more accurate impulse-response curve, and thus presents a

more transparent picture of dynamic relations in the macroeconomy. The varied frequency

VAR model only operates on the first stage. Varied frequency data are reconciled neither in

an aggregated model with low frequency data nor in a disaggregated model with interpolated

data. Instead, data of different frequencies coexist in the same model and make their due

contributions to the parameter estimation. Technical details aside, the approach just provides

a better estimate of the model, leaving intact the economic insights that hallmark the structural

VAR analysis.
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CHAPTER 3. LINEAR REGRESSION USING BOTH TEMPORALLY

AGGREGATED AND TEMPORALLY DISAGGREGATED DATA:

REVISITED

3.1 Introduction

Incomplete data is a common problem in applied economics. In the regression analysis,

there are occasions when complete data of many relevant regressors are collected, but data

on one or more key covariates are aggregated by group, by region, by time, and so on. To

make the best use of the available data and minimize information loss, we hope to use both

aggregated and disaggregated data in a regression. The conventional wisdom is a two-equation

least squares (LS) in which the first regression imputes the unobservable disaggregated data,

and then the imputed covariate data are used in the second regression. Three decades ago, with

the same title, Hsiao (1979) and Palm and Nijman (1982) consider the maximum likelihood

(ML) estimation of an aggregated covariate data (ACD) model in which data are measured

at different temporal frequencies. However, this approach receives little attention in the sub-

sequent empirical work. Perhaps part of the reason is that Palm and Nijman find that the

likelihood function cannot be factorized into two separable parts as suggested by Hsiao. Palm

and Nijman conclude that the computational advantage of ML is lost in the ACD model.

This paper revisits the model in Hsiao (1979). One contribution of this paper is that the

likelihood function is found to be separable by suitable reparameterization if one instrument

corresponds to one endogenous regressor. In that case, an analytic full-information ML esti-

mator does exist and can be obtained by two auxiliary regressions. That implies an efficient

estimator can be secured without computational barriers, and thus overshadows the LS impu-

tation approach.
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Our idea of likelihood separability is inspired by the statistics literature on missing data. In

contrast to the standard missing data problem where a fraction of observations are unavailable,

data aggregation blinds all individual-level observations, leaving relatively few aggregated data.

However, once the correlation structure of aggregated and disaggregated values is properly ad-

dressed, the ACD model bears many similarities to the missing data problem. Anderson (1957),

in the context of missing multivariate normal variates, raises the important idea of factoring the

likelihood function into two parts, each of which can be maximized analytically. Gourieroux

and Monfort (1981) extended that method to regression models with missing covariate data.

In this paper, we follow this track and extend the idea of likelihood separability to the ACD

model.

We are aware that not every ACD model specification satisfies the likelihood separability

conditions. Furthermore, the practitioners may have their own models while at the same time

aggregated covariates are involved. In that case, the likelihood function has to be maximized

numerically in general. As an alternative to numerical ML, we propose a competing Bayesian

approach implemented by the Gibbs sampler, which is another contribution of this paper. For

models without analytic solutions, our Monte Carlo study shows that the Bayesian estimator

is more robust and less sensitive to the initial values.

Our third contribution is a critique on LS imputation approaches applied to the ACD

model. The asymptotics of LS-type estimators have been extensively discussed in the liter-

ature. Gourieroux and Monfort (1981) provide asymptotic comparisons of a variety of LS

estimators for the missing data regression. In Hsiao (1979) and Palm and Nijman (1982)

there are also comparisons the relative efficiency of ML estimator with LS-type estimators for

the ACD regression. In addition, simulation-based multiple imputation strategies (see Rubin,

1987; Schafer, 1997; Allison, 2000) can also be used to compute the asymptotic standard error

of those estimators. However, for a ACD regression model with endogenity problems, some

LS-type estimators are not consistent, and some consistent estimators discard apparent infor-

mation. Those drawbacks are overcome by the ML and Bayesian estimators, which is the main

reason we do not recommend the usage of LS imputation.

The model in Hsiao (1979) is originally designed for temporal aggregation, which is com-
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monly found in macroeconomic and financial data. Temporal aggregation and mixed sampling

frequencies regression can be appropriately tackled by time series techniques. Geweke (1978),

Ghysels et al. (2006) and Andreou et al. (2010) develop corresponding models and estimation

techniques. Revisiting Hsiao (1979), we feel that his model might be most suitable for aggrega-

tion problems encountered in applied microeconomics. We illustrate the potential applications

of the ACD regression with three examples.

Example 3.1. We want to evaluate the impact of the Low-Income Home Energy Assistance

Program (LIHEAP) on the subsequent energy expenditures of its recipients. The LIHEAP grant

is a one-time payment for the winter season, whereas the gas or electricity is always billed

monthly. Although we can aggregate the monthly bills as well and conduct an analysis at the

seasonal level, we lose the monthly information contained in the dependent variable,and other

covariates such as monthly income and weather. Now consider the ACD regression: monthly

usage of the grant (in consumption or saving) is latent, up to the individual choice and summing

up to the observable total amount. If we can impute the latent monthly grant usage, we will

know what proportion of the grant contributes to monthly energy expenditures.

Example 3.2. Occupational Outlook Handbook (Bureau of Labor Statistics, U.S. Department

of Labor, 2010) predicts that veterinarians will increase by 33% over the 2008–18 decade, much

faster than the average for all occupations. Suppose we want to study whether the fast growth of

the cat (pet) population pushes up the demand for veterinary services. We searched the database

for public use and found that the veterinarian data, along with many other covariates, of each

county are available, while the pet population is only recorded for each state, hence the ACD.

Example 3.3. In development economics, we might be interested in the calorie-income elastic-

ity in poor countries. The calorie intake is an individual measure, varying among men, women

and children. However, the observable household income is likely to be redistributed within the

family, and thus the real individual income is a latent regressor to the researcher.

There are many practical reasons the covariate data are aggregated. In Example 1 and 3, by

the nature of the variable, the disaggregated values are never observed. Example 2 illustrates

that data collection difficulties, confidentiality of the personal information, and grouping during
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the dataset construction often lead to aggregated variables. This is especially true for the

publicly accessible dataset.

The rest of the paper is organized as follows. Section 3.2 presents the ACD model. Section

3.3 derives the full-information likelihood function and discusses conditions for separability.

Section 3.4 proposes a competing Bayesian estimator using the Gibbs sampler. Section 3.5

briefly reviews the traditional least squares based solutions. Section 3.6 compares various

estimators by Monte Carlo experiments. Section 3.7 extends the model to multiple aggregated

covariates, imbalanced aggregation, as well as partial aggregation. Section 3.8 concludes the

paper.

3.2 The ACD model

We follow the model and notation in Hsiao (1979) and Palm and Nijman (1982), but add

a richer set of regressors for better control of partial effects.

The ACD model consists of the following equations:

yt,i = xt,iβ + wt,iδ + ut,i (3.1)

xt,i = zt,iα+ wt,iγ+vt,i (3.2)

xt =
n∑
i=1

xt,i (3.3)

where  ut,i

vt,i

 ∼ i.i.d.N


 0

0

 ,

 σ2
u σuv

σuv σ2
v


 , t = 1, ..., T ; i = 1, ..., n.

Exogenous explanatory variables (row vectors) wt,i, zt,i are uncorrelated with disturbance

terms, and parameters δ, α, γ are column vectors.

Eq. (3.1) is the primary regression model and β is the parameter of main interest. However,

the key covariate data xt,i are unavailable at the disaggregated level, with only aggregated values

xt being observed. Other variables yt,i,wt,i, zt,i all have complete data. As in Hsiao (1979),

the subscript (t, i) originally refers to the ith observation in the year t. That is, semiannual

(or quarterly, monthly) data are aggregated into annual data. In more general settings, we
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may interpret t as the group index, and i as the ith member in that group. Data of individual

members in a group are aggregated. For instance, in Example 2, xt,i refers to the latent pet

population in the county i of the state t, but only the state-level population xt is observed.

Eq. (3.2) is the imputation model for the unobserved xt,i. The choice of variables for

imputation was discussed in Schafer (1997) and Van Buuren et al. (1999). They suggested

that covariates in the main regression (i.e. wt,i) should be included, and factors related to

missing mechanisms and with substantial explanatory power over xt,i can also be included,

which are captured in zt,i. For instance, in Example 1, in addition to xt,i (the latent grant

usage) which explains the monthly energy bill, a plausible set of regressors in wt,i may include

the outdoor temperature, household income, family and room size, the age indicator variable,

etc. To impute xt,i, we may add all variables in wt,i and monthly saving-to-income ratio as zt,i.

Of course, the data aggregation model per se does not require the appearance of wt,i in

both Eq. (3.1) and (3.2). Even if some or none of the variables in wt,i are included in Eq. (3.2),

the model is still estimable by both ML and Bayesian methods. However, the separability of

the likelihood and the closed-form solution requires the presence of wt,i in Eq. (3.2).

The relationship of disturbance terms across two equations determines the role of xt,i in

Eq. (3.1). If we allow the possibility that some unmodelled factors (maybe because of data

collection difficulties) can affect both xt,i and yt,i, then ut,i and vt,i are correlated. In that case,

xt,i is an endogenous regressor in Eq. (3.1). On the other hand, by the exogeneity assumption

on zt,i, it satisfies all the requirements of a valid instrument. Of course, the data aggregation

model per se is not necessarily associated with endogeneity. Maybe zt,i is included solely

because it can better explain and impute the missing xt,i. However, as we will see below, if we

do have one instrument corresponding to one endogenous regressor, we allow the separability

of the likelihood function.

Though disturbances across equations are allowed to be correlated, throughout this paper

we assume no serial correlation. That is, changing subscript either t or i will lead to uncorrelated

disturbances. If we had long time series aggregated at varied frequencies, it would be more

appropriate to infer the dependency structure of disaggregated series from observed aggregated

series. However, in microeconomic applications, the aggregation is often at the geographic or
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individual level as in Example 2 and 3, and the dependency structure is not obvious. Example

1 does involve temporal aggregation, but there are only 4 or 5 months in winter, so it is harder

to model their dependency.

3.3 Maximum likelihood estimation

3.3.1 Joint likelihood

Although the ACD model can be estimated by LS procedures, this approach is not efficient

(see Palm and Nijman (1982) and Gourieroux and Monfort (1981) for discussion). An efficient

estimator of θ ≡
(
α,β, γ, δ,σ2

u, σ
2
v , σuv

)
can be obtained by making full use of the information

conveyed by the observed data, maximizing the joint likelihood

lnL (θ) =
T∑
t=1

ln f (yt,1, ..., yt,n, xt)

conditional on the exogenous regressors wt,i, zt,i.

Hsiao (1979) and Palm and Nijman (1982) derive the likelihood for the case of n = 2,

that is,
∑T

t=1 ln f (yt,1, yt,2, xt). Hsiao (1979) first introduced xt,1 into the likelihood and then

integrated it out: f (yt,1, yt,2, xt) =
∫
f (yt,1, yt,2 |xt, xt,1 ) · f (xt, xt,1) dxt,1. Palm and Nijman

(1982) derived an equivalent form of the likelihood f (yt,1 + yt,2, yt,1 − yt,2, xt) by integration

with respect to xt,1.

In fact, a shortcut to obtain the joint likelihood is by manipulation of Eq. (3.1) to (3.3).

First of all, define the following symbols:

yt =

n∑
i=1

yt,i, zt =

n∑
i=1

zt,i, wt =

n∑
i=1

wt,i,

yt =


yt,1

...

yt,n

 , xt =


xt,1

...

xt,n

 , zt =


zt,1

...

zt,n

 , wt =


wt,1

...

wt,n

 .

Plugging Eq. (3.2) into Eq. (3.1) and (3.3), we have

yt,i = zt,iαβ + wt,i (βγ + δ) + (βvt,i + ut,i) ,

xt = ztα+ wtγ+ (vt,1 + ...+ vt,n) .
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Since (vt,1, ..., vt,n, ut,1, ..., ut,n) can be viewed as 2n dimensional multivariate normal, their n+1

dimensional (mean-adjusted) linear combinations (yt,1, ..., yt,n, xt) are also multivariate normal,

and we have yt

xt

 ∼ N


 ztαβ + wt (βγ + δ)

ztα+ wtγ

 ,
 (β2σ2

v + σ2
u + 2βσuv

)
In

(
βσ2

v + σuv
)
ιn(

βσ2
v + σuv

)
ι′n nσ2

v


 ,

where In is the identity matrix, and ιn is a column vector of ones.

If we decompose the joint multivariate normal density into

f (yt, xt) = f (yt |xt ) · f (xt) ,

we will arrive at expression (11) on p.246 in Hsiao (1979) where f (yt |xt ) is termed L1 and

f (xt) termed L2. Palm and Nijman (1982) had the same in expression (4) on p.335 of their

paper.

3.3.2 Separability of likelihood

The likelihood function L (θ) is separable if it can be factorized as

L (θ) = L1 (θ1) · L2 (θ2) ,

where (θ1, θ2) is a partition of θ.

A separable likelihood function has a computational advantage in that maximization with

respect to θ can be performed through maxθ1 L1 (θ1) and maxθ2 L2 (θ2) respectively. Moreover,

Anderson (1957) discovered that those two maximizations may have analytic solutions for some

(but not all) types of missing multivariate normal variates.

For the ACD model, Palm and Nijman (1982) pointed out that the L1 and L2 in Hsiao

(1979) are not separable. However, there are two useful special cases in which separability does

exist. To find the separable form, we first factorize the joint density in the other order:

f (yt, xt) = f (yt) · f (xt |yt ) ,

and then we reparameterize the model and construct the partition.
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The first case is when zt,i is a scalar variable (so is α), and no restrictions are imposed on

σuv.

Then we have

f (yt) = φ (yt; zt ·A+ wt ·B, C · In) ,

f (xt |yt ) = φ (xt; zt ·D + wt ·E + yt · F,G) ,

where φ (y;µ,Σ) is the density of N (µ,Σ) evaluated at y, and

A = αβ,

B = βγ + δ,

C = β2σ2
v + σ2

u + 2βσuv,

D = α−
(
βσ2

v + σuv
) (
β2σ2

v + σ2
u + 2βσuv

)−1
αβ,

E = γ −
(
βσ2

v + σuv
) (
β2σ2

v + σ2
u + 2βσuv

)−1
(βγ + δ) ,

F =
(
βσ2

v + σuv
) (
β2σ2

v + σ2
u + 2βσuv

)−1
,

G = nσ2
v − n

(
βσ2

v + σuv
)2 (

β2σ2
v + σ2

u + 2βσuv
)−1

.

The derivation is straightforward in that f (yt) and f (xt |yt ) are simply the marginal and

conditional density of the multivariate normal distribution. However, the result implies that

the likelihood function have a separable form with respect to the new parameters, which can

be partitioned as (A,B, C) , (D,E, F,G).

Furthermore, note that

max
A,B,C

T∑
t=1

ln f (yt)

is equivalent to the ML estimation of the linear regression

yt,i = zt,i ·A+ wt,i ·B + εt,i,

where εt,i ∼ N (0, C). The analytic ML estimator is given by Â

B̂

 =

[
T∑
t=1

n∑
i=1

(zt,i,wt,i)
′ (zt,i,wt,i)

]−1 [ T∑
t=1

n∑
i=1

(zt,i,wt,i)
′ yt,i

]
,

Ĉ =
1

nT

T∑
t=1

n∑
i=1

(
yt,i − zt,iÂ−wt,iB̂

)2
.
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Similarly,

max
D,E,F,G

T∑
t=1

ln f (xt |yt )

is equivalent to the ML estimation of the linear regression

xt = zt ·D + wt ·E + yt · F + ηt,

where ηt ∼ N (0, G). The ML estimator is given by
D̂

Ê

F̂

 =

[
T∑
t=1

(zt,wt, yt)
′ (zt,wt, yt)

]−1 [ T∑
t=1

(zt,wt, yt)
′ xt

]
,

Ĝ =
1

T

T∑
t=1

(
xt − ztD̂ −wtÊ− ytF̂

)2
.

Finally, since the ML estimator is invariant to the one-to-one reparameterization, the full-

information ML estimator for
(
α,β, γ, δ,σ2

u, σ
2
v , σuv

)
is related to (A,B, C,D,E, F,G) by the

following formula:

α = D +AF ,

β =
A

D +AF
,

γ = E + BF ,

δ =
BD −AE

D +AF
,

σ2
u =

A2G+ nCD2

n (D +AF )2 ,

σ2
v = CF 2 +

1

n
G,

σuv =
nCDF −AG
n (D +AF )

.

There is one issue to clarify. Note that the covariance matrix of ut,i, vt,i must be positive

definite, which imposes inequality constraints σ2
u > 0, σ2

v > 0, and σ2
uσ

2
v − σ2

uv > 0. The two

auxiliary regressions yield Ĉ > 0, Ĝ > 0 by construction, so we immediately have σ̂2
u > 0,

σ̂2
v > 0. Furthermore, a little algebra reveals σ̂2

uσ̂
2
v − σ̂2

uv > 0. In a word, the above procedure

guarantees that inequality constraints are automatically satisfied.
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The second case is that zt,i does not exist, and σuv is restricted to zero.

Then we have

f (yt) = φ (yt; wt ·B, C · In) ,

f (xt |yt ) = φ (xt; wt ·E + yt · F,G) ,

where

B = βγ + δ,

C = β2σ2
v + σ2

u,

E = γ −
(
βσ2

v

) (
β2σ2

v + σ2
u

)−1
(βγ + δ) ,

F =
(
βσ2

v

) (
β2σ2

v + σ2
u

)−1
,

G = nσ2
v − n

(
βσ2

v

)2 (
β2σ2

v + σ2
u

)−1
.

The separability of the likelihood implies B̂, Ĉ can be obtained from the linear regression

of yt,i on wt,i, Ê, F̂ , Ĝ can be obtained from the regression of xt on wt, yt. Then the full-

information ML estimator of
(
β, γ, δ,σ2

u, σ
2
v

)
can be solved with the following closed form:

β =
nCF

nCF 2 +G
,

γ = E + BF ,

δ =
BG− nCEF

nCF 2 +G
,

σ2
u =

CG

nCF 2 +G
,

σ2
v = CF 2 +

1

n
G.

The above two cases deserve some remarks.

First, if the ACD model specification does not belong to the two special cases, it does not

mean the model is not estimable by ML. As long as the model is identifiable, the likelihood can

always be maximized by numerical procedures. However, separability of the likelihood offers a

computational advantage — it is even less costly than the imputed value two-step estimator.

Note that both point estimators are computed from two OLS regressions, but the standard
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error adjustment for the two-step estimator is not straightforward, while standard errors for

the ML estimator can be computed by the Delta method.

Second, as far as an applied problem is concerned, the two special cases are not so restrictive

as they might seem. Separability of the likelihood can be achieved if we reasonably redesign

the model in use. Case 1 requires one instrument variable zt,i corresponds to one endogenous

aggregated regressor xt,i. Suppose the goal is to impute the aggregated xt,i, but the endogeneity

is not of major concern. By allowing the possibility of non-zero σuv, we gain, in addition to

wt,i, another variable zt,i which lends explanatory power to impute xt,i. If more than one such

additional variables are available, we might consider extracting the first principal component of

them. In that fashion we retain most of the explanatory power for imputation and meanwhile

save computational costs. Case 2 is suitable when xt,i is not endogenous, but the only set of

regressors wt,i appearing in both Eq. (3.1) and (3.2) seems restrictive. If we have different

covariates for the two equations in mind, we can take the union of the regressors to form wt,i.

Lastly, if zt,i does not exist, and we allow σuv 6= 0, the model is not identified, and thus

should be avoided.

3.4 Bayesian estimator

If either special case is satisfied, the analytic ML estimator is our first choice of estimating

the ACD model for the sake of efficiency and computability. However, we are aware that there

are circumstances when i) we cannot revise our model catering to the special cases, and the

numerical ML does not perform satisfactorily; ii) we have prior information or beliefs on the

parameter values or restrictions on the parameters; or iii) we are primarily estimating other

models, meanwhile some data are aggregated. In these situations, the likelihood might be

difficult to formulate and maximize numerically. We therefore propose a competing Bayesian

approach, in which the joint posteriors of the latent covariate as well as other parameters of

uncertainty are simulated using the Gibbs sampler.

Though frequentist and Bayesian inferences handle parameter uncertainty differently, both

make use of the sampling distribution, or the “likelihood function” when the sampling dis-
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tribution is viewed as a function of model parameters. From the Bayesian perspective, the

posteriors are proportional to the priors times the likelihood. When the priors are diffuse, the

posteriors virtually inherit the shape of the likelihood function. A Bayesian “point estimator”,

under the all-or-nothing decision rules, can be the mode of the posteriors, which coincides with

ML estimator since ML seeks the peak of the likelihood function. In this sense, the classic and

Bayesian inferences are comparable since the information contained in the sampling distribu-

tion is the same. A pragmatic difference is that numerical ML has limited ability to locate the

peak if the starting values are not carefully specified, while the Bayesian MCMC simulation

with flat prior can reliably recover the entire shape of the likelihood.

The Gibbs sampler cycles through the full conditional posteriors (each variable or variables

block conditional on other variables as well as the data). In latent variable models, posterior

conditionals for model parameters would be of standard form if the latent variable were known.

The key step is to specify the posterior conditionals for the latent variable.

Let us first define the following symbols:

ψ = (β, δ′, α′, γ′)′, Xti =

 (xt,i,wt,i) 0

0 (zt,i,wt,i)

,

Yt,i =

 yt,i

xt,i

 , Σ =

 σ2
u σuv

σuv σ2
v

.

Conjugate proper priors are specified as:

ψ ∼ N
(
µ,V

)
,

Σ−1 ∼Wishart (Ω,ν) .

The hyperparameters µ,V,Ω,ν can be set to contain little information, so that posteriors

are mostly learned from the likelihood function.

Conditional on the latent {xt,i}, it is a standard seemingly unrelated regression (SUR)

model. The full posterior conditionals are (refer to the textbook Koop et al. (2007) for a
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derivation):

ψ |· ∼ N (Dd,D) ,

Σ−1 |· ∼Wishart
(
Ω,ν

)
,

where

D=

(
T∑
t=1

n∑
i=1

X′tiΣ
−1Xti + V−1

)−1

,

d =

T∑
t=1

n∑
i=1

X′tiΣ
−1Yt,i + V−1µ,

Ω =

[
Ω−1 +

T∑
t=1

n∑
i=1

(Yt,i −Xtiψ) (Yt,i −Xtiψ)′
]−1

,

ν = ν + nT.

To derive the full posterior conditional distribution for the latent {xt,i}, we first introduce a

proposition on restricted multivariate normal distribution. Fraser (1951) solved for the general

form of n-dimension distribution subject to k (k < n) linear constraints by transforming the

linear space, but his procedure is descriptive and no explicit distributional forms are given.

However, for the purpose of this paper, we only need to solve for a special case — n originally

uncorrelated normal variates subject to one aggregation constraint. Explicit solutions are

provided in the following proposition (See the appendix for a proof).

Proposition 3.1. Let x = (x1, ..., xn)′ be a multivariate normal random vector with zero

correlations. xi ∼ N
(
µi, σ

2
)
, i = 1, ..., n. Conditional on the aggregation constraint:

∑n
i=1 xi =

x where x is fixed, we have

x−n |x ∼ N

[
µ−n +

1

n

(
x−

n∑
i=1

µi

)
ιn−1, σ

2

(
In−1 −

1

n
ιn−1ι

′
n−1

)]
,

where x−n = (x1, ..., xn−1)′, µ−n = (µ1, ..., µn−1)′, In−1 is the identity matrix, and ιn−1 is a

vector of ones. Moreover, xn |x−n, x is degenerated, and equals to x−
∑n−1

i=1 xi.

Proof. See appendix.
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Marginally, xi |x ∼N
[
µi + 1

n (x−
∑n

i=1 µi) ,
(
1− 1

n

)
σ2
]

for i = 1, ..., n. However, only

n− 1 of them can form a multivariate normal distribution, with the remaining variable having

a degenerated distribution. To sample from that restricted distribution, we first take draws

from f (x−n |x), and then subtract
∑n−1

i=1 xi from x to obtain xn.

We now derive the posterior conditional distribution of the latent {xt,i} in the ACD model.

The latent covariate data are uncorrelated unconditionally, but correlated conditional on the

aggregation constraint. So for each group t = 1, ...T , we sample (xt,1, ..., xt,n) using Proposition

3.1. The distributional form is provided in the next proposition (See the appendix for a proof).

Proposition 3.2. For every group t, the full posterior conditional xt |· can be decomposed as

xt,−n |· ∼ N

[
µt,−n +

1

n

(
xt −

n∑
i=1

µt,i

)
ιn−1, σ

2

(
In−1 −

1

n
ιn−1ι

′
n−1

)]
,

xt,n |·,xt,−n = xt −
n−1∑
i=1

xt,i,

where

xt,−n = (xt,1, ..., xt,n−1)′ ,

µt,−n =
(
µt,1, ..., µt,n−1

)′
,

µt,i = zt,iα+ wt,iγ+
βσ2

v + σuv
β2σ2

v + σ2
u + 2βσuv

[yt,i − zt,iαβ −wt,i (βγ + δ)] ,

σ2 = σ2
v −

(
βσ2

v + σuv
)2 (

β2σ2
v + σ2

u + 2βσuv
)−1

.

Proof. See appendix.

The result is conformable with the “Exercise 14.19 (Missing data, 3)” in Koop et al. (2007),

That exercise solves a missing data problem with a univariate regression imputation. The

intuition underlying the approach is that our knowledge of missing data is updated by two pieces

of information: one from the main regression equation, while the other from the imputation

equation. The ACD proceeds further, since there is a third piece of information from the

aggregation constraint.

The Gibbs sampler cycles through ψ |· , Σ−1 |· and xt |· , t = 1, ..., T . Once the chain

converges, we obtain posterior draws from the joint distribution of ψ,Σ−1, {xt} conditional on

{yt,i} , {xt}.



www.manaraa.com

45

Note that our prior knowledge can be flexibly incorporated into the Bayesian model. For

instance, if we know that parameters must belong to some set, we might use truncated priors;

if the parameters are subject to equality or inequality constraints, methods in Geweke (1995)

can be employed; if we take an objective Bayesian stance, we might use non-informative priors

for ψ and Σ−1. In all those cases, sampling procedures for model parameters may change

accordingly, but the essential step to sample the latent {xt,i} remains the same.

There are also circumstances when some other models are of primary interest while some

data are aggregated. The Bayesian procedure is flexible enough to handle that complicity. For

example, when estimating a Probit model where {yt,i} is binary, while at the same time one

covariate {xt,i} is aggregated, the standard Gibbs sampler for the Probit model can still be

used, with the insertion of an additional step outlined earlier to sample the latent covariate.

3.5 Least squares estimators

For completeness of estimation strategies, we outline several ways to estimate the ACD

model on the basis of LS.

The first approach is an all-aggregated-data estimator. Since the parameters of primary

interest are β and δ, we effectively ignore the imputation regression Eq. (3.2), but aggregate

yt,i and wt,i as well to regress

yt = xtβ + wtδ + ut.

This estimator is consistent as T →∞, the asymptotic variance is n times larger than what

it would be attained by regressing Eq. (3.1) if complete data were observed.

The second approach is a two-step estimator due to Dagenais (1973), which is used to

address the conventional missing data problems. In the first step, we use aggregated data

{xt, zt,wt} to fit Eq. (3.2), and then use disaggregated data
{
zt,i,wt,i

}
to predict (impute)

{xt,i} as

x̂t,i = zt,iα̂+ wt,iγ̂,

where α̂, γ̂ is the OLS estimator of regressing xt on zt,wt.
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In the second step, with x̂t,i in place of xt,i, we regress Eq. (3.1). Provided that the set zt,i is

non-empty, the Dagenais estimator is consistent. Otherwise, we have perfect multicollinearity

and β is not identified. This is a difference between data aggregation and general missing data

problems.

There is one obvious problem with this estimator — the imputed x̂t,1, ..., x̂t,n cannot sum

up to xt. Therefore, the information content in the aggregated data is not fully explored.

The third is the minimum mean squared error (MSE) two-step estimator proposed by Hsiao

(1979). The estimator is similar to the Dagenais estimator except that the imputed value is

given by

x̂t,i = zt,iα̂+ wt,iγ̂ +
1

n

(
xt −

n∑
i=1

zt,iα̂+ wt,iγ̂

)
.

Essentially, we spread the imputation discrepancy xt −
∑n

i=1 zt,iα̂ + wt,iγ̂ evenly across

the fitted value zt,iα̂ + wt,iγ̂. By construction, the aggregation constraint is always satisfied.

The rationale of the imputation can be seen in Proposition 3.1. The imputed value is the

conditional mean of xt,i |xt , hence the name “minimum MSE”. Furthermore the covariance

structure of xt,−n |xt implies the negative correlation of imputation errors. Therefore, Hsiao

(1979) proposed using GLS in the second step regression. When σuv = 0, the covariance

matrix of the disturbances is block diagonal, with the covariance within a group (block) given

by β2σ2
v

(
In − 1

n ιnι
′
n

)
+ σ2

uIn.

Although it seems that the minimum MSE estimator makes the best use of the information

and should outperform the other two estimators, in fact that none of the three LS estimators

dominates the others. First, if σuv 6= 0, the minimum MSE estimator is inconsistent due

to endogeneity, while the Dagenais estimator is still consistent. Second, if imputation is of

poor quality — σ2
v is large, it is possible that Dagenais estimator is less efficient than the

all-aggregated-data estimator. More details are provided in the appendix.

Lastly, since both the Dagenais estimator and the minimum MSE estimator replace the

true xt,i with the imputed value x̂t,i in Eq. (3.1), the conventional OLS standard error under-

estimates the true variability of the estimator. One solution is to analytically derive a modified

standard error by accounting for all uncertainties, another strategy is to use multiple imputa-

tion. In the latter method, we sample
(
α̂∗, γ̂∗, σ̂2∗

v

)
from the distribution of

(
α̂, γ̂, σ̂2

v

)
, and then



www.manaraa.com

47

generate the noise term v∗t,i from N
(
0, σ̂2∗

v

)
. Therefore, one set of simulated “complete data”

for the Dagenais estimator is constructed as

x̂∗t,i = zt,iα̂
∗ + wt,iγ̂

∗ + v∗t,i.

Similarly, the simulated “complete data” for the minimum MSE estimator is

x̂∗t,i = zt,iα̂
∗ + wt,iγ̂

∗ + v∗t,i +
1

n

(
xt −

n∑
i=1

zt,iα̂
∗ + wt,iγ̂

∗ + v∗t,i

)
.

Repeat the process several times, we obtain several copies of the “complete data”. For

each copy, we estimate Eq. (3.1) by OLS. The final point estimator is the average of repeated

estimates, with the total variance equal to the variance of repeated estimates (the between

variability), plus the average of the estimated variances (the within variability).

3.6 Simulation studies

In this section, we use simulated data to evaluate the performance of various estimators

listed in previous sections. For the ACD model with likelihood separability, we compare the

analytic ML estimator to three LS estimators, focusing on their relative efficiency. For the

model without separability, we compare the performance of the numerical ML and the Gibbs

sampler, with the focus on the estimator stability.

For the case with separability, the simulated data experiment is specified as follows:

n = 12, T = 300,

yt,i = (xt,i,wt,i) · (1, 2, 3, 4)′ + ut,i,

xt,i = (zt,i,wt,i) ·
(

1
2 , 1, 1, 1

)′
+ vt,i, ut,i

vt,i

 ∼ N


 0

0

 ,

 0.5 0.1

0.1 0.1


.

zt,i and three components of wt,i are generated from i.i.d. N
(
0, 1

4

)
.

For each set of simulated data, we obtain the three LS estimators (i.e. the all-aggregated-

data, Dagenais, and minimum MSE estimators) as well as the analytic ML estimator. Then

we repeat the data generating process 500 times, hence 500 copies of estimators.
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Summary statistics are reported in Table 3.1. Each estimation approach takes three columns.

The first column reports the estimator corresponding to the first simulated data set. The sec-

ond column shows the average point estimators in 500 repetitions. The third column lists the

standard deviation of the 500 repetitions, which can be viewed as the Monte Carlo standard

error of the point estimator. If divided by
√

500, it indicates the numerical standard error

(NSE) of the average estimator.

In the current setting, σuv 6= 0, the minimum MSE estimator is inconsistent (see Section

3.5). The point estimator β̂ averages 1.115 with the NSE 0.0038, significantly different from

the true value of 1. Similarly, δ̂ is also biased due to the endogeneity of xt,i.

The simulation results also confirm that both the Dagenais estimator and ML estimator

are consistent. β̂ using the Dagenais imputation averages 0.998 with the NSE 0.0036, and ML

has an average value of 0.996 and NSE 0.0031. Both are close to the true value. However, the

Dagenais estimator neglects the aggregation constraint and information usage is inadequate, so

we observe that the Monte Carlo standard error of Dagenais estimator is 0.081, which is larger

than that of the ML estimator which is 0.069.

The presence of the correlation between disturbances across equations biases the minimum

MSE estimator and all-aggregated-data OLS estimator. However, both are consistent when

σuv = 0. Results when σuv is changed from 0.1 to 0 are shown in Table 3.2. On average, β̂

for the all-aggregated-data, Dagenais, and minimum MSE estimators are 1.001, 0.997, 0.997

respectively. However, the standard errors are 0.105, 0.084, 0.076 respectively. The minimum

MSE estimator incorporates the information content of both zt,iα̂ and xt, and therefore out-

performs the other two. Also note that the likelihood is not separable when σuv = 0, if we still

use analytic ML we have to estimate σuv as well, which is a source of efficiency loss.
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OLS Dagenais Minimum MSE ML

1st mean std 1st mean std 1st mean std 1st mean std

β 1.576 1.614 0.099 1.008 0.998 0.081 1.133 1.115 0.085 0.983 0.996 0.069

δ1 1.425 1.386 0.123 1.992 1.999 0.091 1.866 1.882 0.095 2.019 2.003 0.077

δ2 2.312 2.391 0.124 2.968 3.004 0.091 2.842 2.887 0.096 2.970 3.007 0.076

δ3 3.421 3.392 0.130 3.921 4.004 0.091 3.786 3.887 0.096 3.985 4.007 0.078

σ2
u 0.412 0.434 0.036 0.412 0.434 0.036 0.412 0.434 0.036 0.497 0.500 0.026

α1 0.483 0.502 0.036 0.483 0.502 0.036 0.495 0.502 0.028

γ1 1.011 1.003 0.036 1.011 1.003 0.036 1.010 1.002 0.027

γ2 0.993 1.000 0.037 0.993 1.000 0.037 1.017 0.999 0.027

γ3 1.075 0.998 0.038 1.075 0.998 0.038 1.037 0.997 0.027

σ2
v 0.105 0.099 0.008 0.105 0.099 0.008 0.108 0.100 0.007

σuv 0.153 0.135 0.026 0.124 0.110 0.024 0.115 0.101 0.010

The results are based on 500 simulations. Each estimation approach takes three columns. The first column reports the

estimator for the first simulated data set. The second and third column show the average and standard deviation of the

500 repetitions. For the aggregated data OLS estimator, only Eq. (3.1) is estimated. For the Dagenais and minimum

MSE estimator, Eq. (3.2) is regressed identically, so the numbers are the same. The estimated σuv is obtained from the

identity: V ar (βvt,i + ut,i) = β2σ2
v + σ2

u + 2βσuv , where V ar (βvt,i + ut,i) is estimated from the regression of {yt,i} on

{zt,i,wt,i}, σ2
v is estimated from regressing {xt} on {zt,wt}, and σ2

u from regressing {yt} on {xt,wt}. In the current

setting with σuv = 0.1, only the Dagenais and ML estimators are consistent.

Table 3.1 Monte Carlo comparsion of LS and ML estimators, σuv 6= 0
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OLS Dagenais Minimum MSE ML

1st mean std 1st mean std 1st mean std 1st mean std

β 1.034 1.001 0.105 1.001 0.997 0.084 1.015 0.997 0.076 0.985 0.997 0.081

δ1 1.972 2.001 0.130 1.994 2.000 0.093 1.980 2.000 0.086 2.012 2.002 0.090

δ2 2.853 3.003 0.128 2.957 3.005 0.093 2.943 3.005 0.086 2.960 3.006 0.090

δ3 4.030 4.002 0.137 3.931 4.006 0.093 3.917 4.006 0.087 3.975 4.006 0.091

σ2
u 0.468 0.495 0.041 0.468 0.495 0.041 0.468 0.495 0.041 0.486 0.499 0.025

α1 0.490 0.503 0.037 0.490 0.503 0.037 0.498 0.503 0.035

γ1 1.011 1.003 0.037 1.011 1.003 0.037 1.009 1.002 0.034

γ2 1.017 0.999 0.037 1.017 0.999 0.037 1.031 0.998 0.034

γ3 1.068 0.997 0.038 1.068 0.997 0.038 1.041 0.997 0.035

σ2
v 0.103 0.099 0.008 0.103 0.099 0.008 0.104 0.099 0.008

σuv 0.025 0.004 0.022 0.023 0.004 0.021 0.017 0.002 0.014

The results are based on 500 simulations. Each estimation approach takes three columns. The first column reports the

estimator for the first simulated data set. The second and third column show the average and standard deviation of the

500 repetitions. For the aggregated data OLS estimator, only Eq. (3.1) is estimated. For the Dagenais and minimum

MSE estimator, Eq. (3.2) is regressed identically, so the numbers are the same. The estimated σuv is obtained from the

identity: V ar (βvt,i + ut,i) = β2σ2
v + σ2

u + 2βσuv , where V ar (βvt,i + ut,i) is estimated from the regression of {yt,i} on

{zt,i,wt,i}, σ2
v is estimated from regressing {xt} on {zt,wt}, and σ2

u from regressing {yt} on {xt,wt}. In the current

setting with σuv = 0, all estimators are consistent.

Table 3.2 Monte Carlo comparsion of LS and ML estimators, σuv = 0

When the likelihood is not separable, we compare the performance of the Newton-type

numerical ML and Bayesian estimator using the Gibbs sampler. We consider a model without

separability by adding one covariate in zt,i. xt,i = (zt,i,wt,i) · (1, 1, 1, 1, 1)′+vt,i. Other settings

remain the same.

Though the traditional and Bayesian inference differ fundamentally on the parameter un-

certainty, both of the them fully use the sampling information. If the priors are rather diffuse,

Bayesian inference should also rely on the full-information likelihood function, and thus in large

samples the posterior mean (or mode) should be close to the ML estimator and the posterior

standard deviation close to the ML standard error. Here the major concern is to determine

which numerical procedure can lead to ideal results in terms of speed and stability.

We specify the prior as ψ ∼ N (0, 100 · I9), Σ−1 ∼ Wishart (I2, 1), which contains little

information compared with the likelihood. The Gibbs sampler is run for 20000 draws with the
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Numeric ML Bayesian

True 1st mean std 1st mean std

β 1 1.023 1.008 0.060 1.025 1.004 0.024

δ1 2 1.964 1.993 0.075 1.963 1.998 0.042

δ2 3 2.997 2.995 0.081 2.997 2.997 0.045

δ3 4 3.973 3.991 0.077 3.971 3.995 0.041

σ2
u 0.5 0.493 0.506 0.067 0.495 0.500 0.021

α1 1 1.013 0.997 0.041 1.013 0.999 0.026

α2 1 0.999 0.995 0.040 0.998 0.997 0.025

γ1 1 0.978 1.000 0.030 0.977 0.999 0.025

γ2 1 0.987 0.999 0.038 0.985 1.000 0.026

γ3 1 0.968 1.001 0.039 0.967 1.001 0.028

σ2
v 0.1 0.095 0.101 0.017 0.099 0.104 0.007

σuv 0.1 0.099 0.096 0.039 0.097 0.098 0.008

The results are based on 500 simulated data sets. The summary statistics are calculated with the

apparent outliers (β̂ < 0 or β̂ > 2) removed. Each estimation approach takes three columns. The first

column reports the estimator corresponding to the first simulated data set. The second column shows

the average of the 500 repetitions. The third column lists the standard deviation of the 500 repetitions.

Table 3.3 Monte Carlo comparison of ML and Bayesian estimators
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Histogram of β̂ in 500 repetitions. The upper left panel shows the ML estimation, and the upper right

panel is the Bayesian estimation. The bottom left histogram truncate β̂ to (0.93, 1.07) for ML, and

bottom right for Bayesian estimator.

Figure 3.1 A comparison of ML and Bayesian estimators to the ACD model
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first half of draws burned in. The convergence and mixing diagnostics reveal that the chain

has converged. We treat the posterior mean as the Bayesian point estimator.

We first generate a simulated dataset and set the initial values by adding a N (0, 1) distur-

bance on each true parameter value. If Σ is not positive definite, another disturbance draw

is taken. Then the generated data and initial values are applied to both ML and the Gibbs

sampler. Finally, the process is repeated for 500 times.

As is known, numerical ML can be sensitive to the initial values. In the 500 repetitions of

simulated datasets, the numerical ML crashes 14 times and yields another 8 estimates departing

far from the true values. Since the estimator standard deviation is no more than 0.1 and the

true value of β is one, we define abnormality to be β̂ ≤ 0 or β̂ ≥ 2. To visualize the departing

pattern of abnormal estimators, Figure 3.1 presents the histogram of β̂ in the 500 repetitions.

In the case of crash, β̂ = 0 is assigned for histogram presentation purpose. Compared with the

numerical ML, the Gibbs sampler is more stable. It does not crash, and only yields negative β̂

twice. The abnormal estimators in the Gibbs sampler are close to each other. It is likely the

chain gets stuck in a local high density region and cannot transverse to the region where the

true parameters are located.

With the abnormal estimators removed, the summary statistics are presented in Tables 3.3.

The average of the ML and Bayesian estimates are reasonably close to each other. Estimates of

β̂ average 1.008 for ML and 1.004 for Bayesian. But the standard deviation of the ML estimates

is 0.060, larger than that of the Bayesian 0.024. Though the role of the prior distribution and

finite draws of the Gibbs sampler may partially explain the smaller variance of the estimator,

we do not believe it is the main reason. The numerical issues should be taken into account.

With obvious outliers removed, all of the Bayesian estimates lie in (0.93, 1.07) which is about

plus/minus 3 standard deviations of the average point estimator. However, we observe several

ML estimates with values such as 0.88, 1.22, 1.67. It is not clear it is caused by non-convergence

of the optimizer or just caused by the sampling variation. Those values certainly exert a

non-negligible impact on the calculation of the sample mean and standard deviation of the

estimators. If we truncate the ML β̂ in the region (0.93, 1.07) as well, the mean is 1.003 with

standard deviation 0.025, which is closer to the inference under the Bayesian scheme.
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Although the numerical ML is not as stable as the Gibbs sampler, it does run faster. The

average ML estimation time for one set of simulated data is about 1.04 seconds, while the

20000 draws with the Gibbs sampler takes an average of 37.9 seconds on an ordinary desktop

computer (2.5GHz CPU / 3GB RAM / MATLAB 2009b). Nevertheless, the computation costs

for both methods are affordable.

3.7 Extensions

In an empirical context, the problems we have encountered might be more complicated than

the baseline ACD model. In this section, we outline several extensions to the model and ways

to handle them.

3.7.1 Aggregation of several variables

If more than one covariate is aggregated, the model can be extended as

yt,i = x1t,iβ1 + ...xkt,iβk + wt,iδ + v0t,i

x1t,i = zt,iα1 + wt,iγ1+v1t,i

...

xkt,i = zt,iαk + wt,iγk+vkt,i

with x1t =
∑n

i=1 x1t,i, . . ., xkt =
∑n

i=1 xkt,i, (v0t,i, v1t,i, ..., vkt,i) ∼ N (0,Ω).

For ML, we maximize the joint density of observable variables:

lnL (θ) =

T∑
t=1

ln f (yt,1, ..., yt,n, x1t, ..., xkt) .

The model can always be estimated by numerical ML. However, for analytic solution we

require zt,i contains exactly k variables. The likelihood can be factorized as

f (yt, x1t, ..., xkt) = f (yt) · f (x1t |yt ) · ... · f
(
xkt
∣∣yt, x1t, ..., x(k−1)t

)
.

The analytic ML estimator is obtained from k + 1 auxiliary regressions:

Regress yt,i on zt,i, wt,i.
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Regress x1t on zt, wt, yt.

Regress x2t on zt, wt, yt, x1t.

... ...

Regress xkt on zt, wt, yt, x1t,..., x(k−1)t.

Lastly, by solving an equation system we can recover the ML estimator of β1, ..., βk, δ,

α1, ..., αk, γ1, ..., γk, Ω. See appendix for a derivation.

Suppose zt,i contains J variables (J < k), and some of the covariance terms in Σ are re-

stricted to zero, we still have analytic solution. For example, if we believe x1t,i is uncorrelated

with v0t,i, then the first row and first column of Σ, except for the diagonal element, are re-

stricted to zero. The reparameterized estimator is obtained from the same regressions as above,

but zt,i and zt have reduced dimensions.

In words, separability requires that one instrument corresponds to one endogenous variable.

3.7.2 Unbalanced aggregation

In some applications, group sizes are not equal so that n needs to be written as nt.

Compared with the ML solutions outlined in Section 3, the separability conditions do not

change. The expression of f (yt) remains the same, so does the first regression of yt,i on zt,i,

wt,i. However, the variance of xt |yt changes:

f (xt |yt ) = φ (xt; zt ·D + wt ·E + yt · F, ntG) ,

where ntG = ntσ
2
v − nt

(
βσ2

v + σuv
)2 (

β2σ2
v + σ2

u + 2βσuv
)−1

. Other components remain the

same as before. It implies that

max
D,E,F,G

T∑
t=1

ln f (xt |yt )

can be obtained by weighed least squares of xt on zt,wt, yt with the weights proportional to

nt.

Procedures of the Bayesian simulator are largely unchanged in the unbalanced aggregation.

Full posterior conditionals of ψ and Σ−1 remain the same, and we use nt instead of n when

groupwise taking draws of {xt,i}.
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3.7.3 Partial aggregation

In applied problems, data aggregation may take on another degree of complexity. For

instance, in Example 2, suppose we do find county-level pet population for some states, but

not for the rest. How do we make the best use of the incomplete county-level data instead of

regressing merely with aggregated state-level data?

In general, the partial aggregation problem is raised as follows: suppose group t has nt

members, among which the first kt are observable and the rest are missing. In addition, the

aggregated value xt =
∑n

i=1 xt,i is known. The data are generated according to Eq. (3.1) and

(3.2).

To address this problem, group t can be divided into kt + 1 smaller groups. The first kt

groups are a singleton with known xt,i, and the last group contains nt − kt members, whose

latent values sum up to xt −
∑kt

i=1 xt,i. Then the problem is equivalent to the unbalanced

aggregation introduced in the previous subsection, and both ML and Bayesian estimators can

be implemented.

3.8 Conclusion

Hsiao’s model offers a simple framework for addressing data aggregation problems. This

paper explores several estimation strategies for this model, showing that the solutions do not

always require numerical tools proposed by Palm and Nijman (1982).

The first is a full-information ML estimation. We find that the likelihood function has a

separability property in two useful special cases. As long as one instrument corresponds to

one endogenous variable, the likelihood can be maximized analytically, with the ML estimator

obtained by two linear regressions. For models without the separable likelihood, numerical

procedures can also be used, but initial values must be carefully chosen.

The second is the Bayesian simulator implemented by the Gibbs sampler, the advantage of

which is two-fold. First, it is more stable. Our Monte Carlo study shows that the Bayesian

estimator is less affected by the initial values. Second, it is more flexible. It places no re-
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strictions on the covariates in the imputation regression, and the sampling procedure of latent

disaggregated covariates can be easily inserted into researchers’ models.

The third is a class of LS estimators. The Dagenais two-step estimator is primarily used for

imputing missing data, but it is suitable for aggregated covariate data as well. The minimum

MSE estimator is based on the regression imputation, but also uses the aggregation constraint.

In the absence of correlation of disturbances among equations, the latter makes better use of

information and yields a more precise imputation. Otherwise, the latter is inconsistent, but the

former is still consistent. On top of that, the all-aggregated-data OLS method offers the simplest

way to estimate the model, and is useful when the imputation is of poor quality. Though

conceptually LS is easier to implement than ML and the Gibbs sampler, it is not as efficient in

general and thus not recommended unless we cast doubt on the normality assumption.
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CHAPTER 4. SAMPLING VARIATION, MONOTONE

INSTRUMENTAL VARIABLES AND THE BOOTSTRAP BIAS

CORRECTION

4.1 Introduction

Proposed by Manski and Pepper (2000), Monotone instrumental variables (MIV) is a pow-

erful tool for treatment response identification. The MIV assumption weakens the traditional

instrumental variable assumption by a weak inequality of mean response across sub-populations.

As a result, the MIV sharp lower bound invariably involves a supremum operator and the upper

bound contains an infimum operator.

However, when sampling variation is taken into account, the bounds themselves assume

randomness since the population moments or probabilities are replaced by their analogues.

Though the analogue estimates are still consistent, finite sample bias is a serious concern. As

is noted by Manski and Pepper (2009, p.211), “the sup and inf operations . . . significantly

complicate the bounds under other MIV assumptions, rendering it difficult to analyze the

sampling behavior of analogue estimates.”1 The major statistical problem is that the analogue

estimate of the lower bound is biased upwards and upper bound biased downwards, resulting

in the estimates narrower than the true bounds.

To address this concern, two major lines of research are present in the literature to the best

of our knowledge. One is direct adjustment. Chernozhukov et al. (2009) develop an inference

method on intersection bounds with a continuum of inequalities. Their estimator maximizes or

minimizes the precision-corrected curve defined by the analogue estimates plus a critical value

multiplied by pointwise standard errors. Another solution is bootstrap adustment. Kreider

1The bounds under the monontone treatment selection assumption have simple forms, but under other MIV
assumptions the supremum and infimum operators will appear in the bounds.
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and Pepper (2007) propose a heuristic bootstrap bias correction and applied this approach to

their employment gap identification problems. Though Monte Carlo experiments in Manski and

Pepper (2009) provide evidence on the effectiveness of bias reduction, theoretical foundation has

not been established to justify the bootstrap correction. In addition, the simulation results of

Manski and Pepper (2009) show that in some cases moderate biases remain after the correction.

The goal of this paper is to justify the bootstrap bias correction. Traditionally, the improve-

ment of the corrected estimator is in the sense of asymptotic refinement. That is, we expect

the bootstrap corrected estimator has a bias going to zero at a faster rate than the uncorrected

estimator. However, there are difficulties applying asymptotic expansion techniques to our

problem, since the bounds under the MIV assumption are not differentiable. In this paper,

we take an innovative, and perhaps more direct, approach to study bootstrap bias reduction.

We rely on asymptotic normality of the estimators to derive our results. Given normally dis-

tributed variates, we bound the magnitude of the upward bias induced by the max (·) operator

and show how the one-level bootstrap reduces this upward bias but cannot eliminate it. In

some circumstances, one-level bootstrap may over-correct the bias. Then under an assumption

that the bias function can be approximated by a polynomial, we show the mechanism of the

multi-level bootstrap bias correction, which successively lowers the order of the polynomial to-

wards unbiasness. Lastly, to make multi-level bootstrap computationally feasible, we propose

a simultaneous bootstrap procedure which conducts many levels of bootstraps at affordable

computational costs.

For convenience, we discretize every random variable so that we can use a categorical dis-

tribution of several dimensions to characterize their joint distribution, which makes easier the

statistical properties of the analogue MIV bounds. For this problem, discretization is not unrea-

sonable. First, the treatment variable is discrete, usually binary, in most applications. Second,

MIV identification requires that the response variable is bounded below and above. Otherwise

the MIV has no identification power unless it is used together with monotone treatment selec-

tion defined in Manski (1997). Finite-valued discrete distribution by nature has a lower and

upper bound. Third, to compute the analogue estimates for each subpopulation classified by

MIV, we usually group the values of the MIV so as to ensure sufficient sample size. Therefore,
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we model treatments, responses and MIVs as finite-valued discrete random variables.

4.2 The mathematical structure of MIV bounds

Manski and Pepper (2000, 2009) use MIV to help bound counterfactual outcomes, while

Kreider and Pepper (2007) consider MIV identification in a partial misreporting problem.

Though the derived MIV bounds look different, they share the same mathematical structure,

so the same bias correction procedure can be applied to both problems. In this section, we

summarize their common structure.

The counterfactual outcomes identification problem can be raised as follows. Let D ∈

{d1, ..., dnD} be a treatment variable. The nD varieties of treatments generate nD types of latent

responses, denoted as Yt ∈ {y1, ..., ynY }, t = 1, ..., nD. Since a person cannot receive more than

one treatment simultaneously, the only observable outcome is Y =
∑nD

t=1 Yt · I (D = dt), where

I (·) is an indicator function. Let Z ∈ {z1, ...znZ} be a MIV such that for any two realizations

zi ≤ zj ,

E (Yt |Z = zi ) ≤ E (Yt |Z = zj ) , ∀t = 1, ..., nD.

Without loss of generality, discrete values of Yt and Z are sorted in an increasing order:

y1 ≤ y2... ≤ ynY , z1 ≤ z2... ≤ znZ .

Consider E (Yt |Z = zj ) for some t = 1, ..., nD, j = 1, ..., nZ . It is bounded below by

sup1≤i≤j E (Yt |Z = zi ) and above by infj≤i≤nZ E (Yt |Z = zi ). Since the MIV is discretized, we

can replace sup (·) by max (·), and inf (·) by min (·). Furthermore, E (Yt |Z = zi ) can be dissem-

bled into an observable part E (Y |Z = zi, D = dt ) and an unobservable part E (Yt |Z = zi, D 6= dt ).

The latter needs to be replaced by the worse-case lower bound y1 and upper bound ynY , which

yields the sharp bounds under the MIV assumption alone:

max
1≤i≤j

E (Y |Z = zi, D = dt ) · P (D = dt |Z = zi ) + y1 · P (D 6= dt |Z = zi ) (4.1)

≤ E (Yt |Z = zj ) ≤

min
j≤i≤nZ

E (Y |Z = zi, D = dt ) · P (D = dt |Z = zi ) + ynY · P (D 6= dt |Z = zi ) .

To make notation compact, let us define
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pikm ≡ P (Z = zi, Y = yk, D = dm),

i = 1, ..., nZ , k = 1, ..., nY , m = 1, ..., nD,

pi·· ≡
∑nY

k=1

∑nD
m=1 pikm,

p ≡ vec
(
{pikm}nZ ,nY ,nDi=1,k=1,m=1

)
,

pi ≡ vec
(
{pikm}nY ,nDk=1,m=1

)
.

Here vec (·) is an operator that vectorizes a multi-dimension array into a long column vector.

For instance, vec
(
{pikm}nZ ,nY ,nDi=1,k=1,m=1

)
turns a nZ × nY × nD array to a nZnY nD × 1 vector.

Also assume pi·· > 0, ∀i = 1, ..., nZ . Then we can rewrite Eq. (4.1) as

max
1≤i≤j

fL (pi) ≤ E (Yt |Z = zj ) ≤ min
j≤i≤nZ

fU (pi) , (4.2)

where

fL (pi) =

nY∑
k=1

nD∑
m=1

pikm
pi··

[yk · I (m = t) + y1 · I (m 6= t)] ,

fU (pi) =

nY∑
k=1

nD∑
m=1

pikm
pi··

[yk · I (m = t) + y1 · I (m 6= t)] .

The misreporting identification problem in Kreider and Pepper (2007) uses respondents’

self-reported health information to bound the effects of (true) disability on employment. Let

L ∈ {0, 1} be observed employment status, X ∈ {0, 1} and W ∈ {0, 1} be the reported and true

disability status respectively, and Z ∈ {z1, ...znZ} , z1 ≤ z2... ≤ znZ be a MIV (namely negative

age in their paper) such that

P (L = 1 |W,Z = zi ) ≤ P (L = 1 |W,Z = zj ) , if i ≤ j.

Respondents are classified into two groups, namely the verified (Y = 1) and the un-

verified (Y = 0), on the basis of researchers’ prior information on their accurate reporting

rate. Taking this verification rate as given, Kreider and Pepper (2007) derive sharp bounds of

P (L = 1 |W = 1). For simplicity, we consider an extreme case that the verified group has a

100% truth-telling rate, while the unverified has an accuracy rate ≥ 0% (i.e., no information).

For each j = 1, ..., nZ , we have
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max
1≤i≤j

P (L = 1, X = 1, Y = 1 |Z = zi )

P (X = 1, Y = 1 |Z = zi ) + P (L = 0, Y = 0 |Z = zi )
(4.3)

≤ P (L = 1 |W = 1, Z = zj ) ≤

min
j≤i≤nZ

P (L = 1, X = 1, Y = 1 |Z = zi ) + P (L = 1, Y = 0 |Z = zi )

P (X = 1, Y = 1 |Z = zi ) + P (L = 1, Y = 0 |Z = zi )

Readers are referred to Proposition 2, corollary 1 in Kreider and Pepper (2007, p.436) for

the derivation. Note that when the accuracy rate is not as extreme as 100% and 0%, the bounds

will be more cumbersome. However, what remains unchanged is that all the probabilities are

conditional on Z = zi. This feature makes the mathematical structure of the MIV bounds (see

below) unchanged.

Define a set of symbols similar to what we defined in the previous problem.

pijkl ≡ P (Z = zi, L = j,X = k, Y = l), i = 1, ..., nZ , j, k, l = 0, 1,

pi··· ≡
∑1

j=0

∑1
k=0

∑1
l=0 pijkl,

p ≡ vec
(
{pijkl}nZ ,1,1,1i=1,j=0,k=0,k=0

)
,

pi ≡ vec
(
{pijkl}1,1,1j=0,k=0,k=0

)
.

Then Eq (4.3) can be written as

max
1≤i≤j

fL (pi) ≤ P (L = 1 |W = 1, Z = zj ) ≤ min
j≤i≤nZ

fU (pi) , (4.4)

where

fL (pi) =
pi111

pi111 + pi011 + pi010 + pi000

fU (pi) =
pi111 + pi110 + pi100

pi111 + pi011 + pi110 + pi100

Comparing Eq. (4.2) with Eq. (4.4), we see the MIV bounds of the two problems have

some features in common:

First, the theoretical bounds are determined by p, the parameter vector summarizing the

joint probability of observable variates. In other words, the observable variates follows a cat-

egorical distribution of multiple dimensions, which is equivalent to a long single-dimension

categorical distribution with parameters p.
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Second, the MIV bounds take the form of max1≤i≤j fL (pi) and minj≤i≤nZ fU (pi), where

p1,p2, ...,pnZ form a partition of p according to the possible values of the MIV.

Third, both fL (pi) and fU (pi) are homogeneous functions of degree zero. Eq. (4.1) and

Eq. (4.3) involves probabilities conditional on Z = zi, which is the ratio of the joint and the

marginal probabilities. Since a constant cancels in the nominator and denominator, fL (pi)

and fU (pi) in Eq. (4.2) and Eq. (4.4) always satisfy degree-zero homogeneity.

4.3 Sampling Variation

In applications, the probability vector p needs to be estimated from the data. Let {vs}ns=1

be i.i.d. draws from the categorical distribution with parameters p. Conceptually, this means

there are n persons taking the survey which asks for each respondent’s realized choice of

(Z, Y,D) or (Z,L,X,W ). All possible choices of (Z, Y,D) define nZnY nD categories and that

of (Z,L,X,W ) define 8nZ categories. So the length of the vector vs is nZnY nD and 8nZ

respectively. The person s chooses a category, so the component in vs corresponding to that

realized category will be coded as 1 with other elements in vs being 0.

By construction, the sample analogue of p can be expressed as

p̂ =
1

n

n∑
s=1

vs.

Fact 4.1. p̂ is a consistent estimate of p, and the asymptotic distribution is

√
n (p̂− p)

d−→ N
[
0, diag (p)− pp′

]
,

where diag (p) refers to a diagonal matrix with the main diagonal being the vector p.

Proof. See appendix.

Suppose the length of p is r; then diag (p)−pp′ is a positive semidefinite matrix of reduced

rank r − 1. The linear combination ι′p̂, where ι is a vector of ones, have the mean of one

and variance of zero. Therefore, the analogue probability estimates always sum up to one. In

addition, the elements of p̂ are negatively correlated since they are subject to the aggregation

constraint.
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Fact 4.1 suggests that the large-sample approximating distribution of p̂ is given byN
[
p, 1

ndiag (p)− 1
npp′

]
.

Of course, it is understood that p̂ is a bounded random vector since each component must fall

in the unit interval.

Partition p̂ into p̂1, ..., p̂nZ in the same way we partition p into p1, ...,pnZ . Now we consider

the asymptotic distribution of fL (p̂i), fU (p̂i), i = 1, ..., nZ .

Proposition 4.2. Let fL (·) be a real differentiable function satisfying homogeneity of degree

zero, that is, fL (cx) = fL (x), ∀c > 0. Then fL (p̂1) , ..., fL (p̂nZ ) are asymptotically indepen-

dent and for each i = 1, ..., nZ ,

√
n [fL (p̂i)− fL (pi)]

d−→ N
[
0,Gi · diag (pi) ·G′i

]
,

where Gi is a row vector such that

Gi =
∂fL (p̂i)

∂p̂′i

∣∣
p̂i=pi .

Proof. See appendix.

The asymptotic distribution of fU (p̂i) can be derived similarly with the subscript L replaced

by U in Proposition 4.2.

The zero-degree homogeneity of fL (·) plays an important role in Proposition 4.2 since

Euler’s Theorem implies that Gipi = 0, i = 1, ..., nZ , resulting in both zero covariances and

simplified variances of the normal variates. Theoretically, Proposition 4.2 provides a unified

asymptotic distribution of fL (·) for any identification problem with the MIV, as long as fL (·)

can be written as a differentiable function of the population probabilities conditional on the

MIV. Proposition 4.2 will be also used to justify the assumptions of the bootstrap bias correction

in the next section. Practically, Proposition 4.2 can be used to compute the asymptotically

variance of fL (p̂i) if we are willing to calculate the cumbersome gradients. However, for a

specific problem, there might be some better way to compute the finite-sample variance. For

instance, once we recognize that the fL (pi) in Eq. (4.2) can be represented as a conditional

expectation, the finite-sample variance of fL (p̂i) is readily given in the next proposition.
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Proposition 4.3. fL (pi) in Eq. (4.2) takes the following form:

fL (pi) = E (Q |Z = zi ) ,

where

Q = Y · I (D = dt) + y1 · I (D 6= dt) .

Conditional on the positive analogue pi··, the finite-sample variance of fL (p̂i) is given by

V ar [fL (p̂i)] =

[
n∑
r=1

1

r

(
n
r

)
(pi··)

r (1− pi··)n−r

1− (1− pi··)n

]
· V ar (Q |Z = zi ) ,

where

V ar (Q |Z = zi ) = E
(
Q2 |Z = zi

)
− [E (Q |Z = zi )]

2

=

nY∑
k=1

nD∑
m=1

pikm
pi··

q2
km −

[
nY∑
k=1

nD∑
m=1

pikm
pi··

qkm

]2

,

and

qkm = yk · I (dm = dt) + y1 · I (dm 6= dt) .

Proof. See appendix.

4.4 Estimating the MIV bounds

Proposition 4.2 indicates that the large-sample approximating distribution of fL (p̂i) is given

by N
[
fL (pi) ,

1
nGi · diag (pi) ·G′i

]
. To estimate the MIV bounds as in Eq. (4.2) and Eq. (4.4),

we need to find an estimator for max1≤i≤j fL (pi). An naive choice is max1≤i≤j fL (p̂i). Though

fL (p̂i) is an asymptotically unbiased estimator for fL (pi), max1≤i≤j fL (p̂i) is not an unbiased

estimator for max1≤i≤j fL (pi) in the finite sample. It is biased upwards simply because max (·)

is convex and Jensen’s inequality implies E [max1≤i≤j fL (p̂i)] > max1≤i≤j fL (pi). Similarly,

minj≤i≤nZ fU (p̂i) has a downward bias if it is used to estimate minj≤i≤nZ fU (pi). This is

unfavorable from the perspective of decision making in that the estimated bounds are narrower

than the true bounds. Kreider and Pepper (2007) propose a heuristic bootstrap bias correction.

The Monte Carlo evidence in Manski and Pepper (2009) indicates the bias can be considerably

reduced, but not eliminated after the correction. In this section, we will analyze the biases
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of a series of estimators and provide a justification for the bootstrap correction. We will also

suggest a feasible approach to conduct several levels of bootstraps simultaneously. We will

focus on the bias correction of max1≤i≤j fL (p̂i), and the same principle can be applied to the

case of minj≤i≤nZ fU (p̂i) as well.

To make our notations compact, define

µi ≡ fL (pi), σ
2
i ≡ 1

nGi · diag (pi) ·G′i, Xi ≡ fL (p̂i), i = 1, ..., j.

µ ≡ (µ1, ..., µj)
′, σ2 ≡ diag

(
σ2

1, ..., σ
2
j

)
, X ≡ (X1, ..., Xj)

′.

Let x be a realization of X. That is, the only one realized x is what we obtained from the

data.

Essentially our task is to propose a good estimator for max (µ) by observing x. To that

end, we need to make some assumptions.

Assumption 4.1. X ∼ N
(
µ,σ2

)
.

Assumption 4.2. σ2 is known.

The rationale for the first assumption is Proposition 4.2, which suggests X1, ..., Xj are

asymptotically independent normal variates. The second assumption is arguable. In practice,

the variances of those variates are unknown, and we at best can provide a consistent estimator

for the variances, say σ̂2, using Proposition 4.2 or Proposition 4.3. It is true that each σ2
i is

positively related to the magnitude of the upward bias (which is most apparent if we assume

the convex function is differentiable and examine the Taylor expansion). However, we do not

know whether E
(
σ̂2
i

)
is larger or smaller than σ2

i in the finite sample, so at best we can argue

that the upward bias derived with σ̂2
i will be close to the true upward bias determined by σ2

i .

In this sense, we view it as a working assumption.

4.4.1 Bias function and a conservative estimator

A naive estimator is the maximum of the sample.

T1 (x) = max (x) .



www.manaraa.com

67

By Jensen’s inequality, E [T1 (X)] > max (µ). So the estimator is biased upwards. Define

the first-level bias function B1 : Rj → R such that

B1 (µ) = E [T1 (X)]−max (µ) .

B1 (·) is a function of µ since X ∼ N
(
µ,σ2

)
. Of course, it is also a function of σ2, which

is assumed to be known and therefore suppressed.

The first-level bias function has a useful property stated below.

Proposition 4.4 (Bounds of the bias function). B1 (·) is bounded by 0 < B1 (µ) ≤ M , ∀

µ∈ Rj, where

M = E [max (X0)] ,

X0 ∼ N
(
0,σ2

)
.

Proof. See appendix.

Note that the upper bound M is computable, at least by simulation. For the special case

of j = 2, Clark (1961), Cain (1994) provide an analytic result.

B1 (µ) = ωµ1 + (1− ω)µ2 + σ0φ

(
µ1 − µ2

σ0

)
−max (µ1, µ2) ,

M = σ0φ (0) ,

where φ (·), Φ (·) is the standard normal p.d.f. and c.d.f. respectively, and

ω = Φ

(
µ1 − µ2

σ0

)
,

σ0 =
√
σ2

1 + σ2
2.

For j = 2, we may plot a 3-D graph of B1 (·), with µ1, µ2 on the x, y axis and B1 on the z

axis (see Figure 4.1). It is a ridge-shaped function. Along the 45◦ line on the x, y plane, B1 (·)

attains the same maximum value σ0φ (0). Off the 45◦ line, B1 (·) gradually decreases towards

zero.

Proposition 4.4 shows that the bias of the naive estimator max (X) is bounded above, so

we can propose a conservative estimator for max (µ):

Tc (x) = max (x)−M .
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By construction, Tc is biased downwards. We call it a conservative estimator because we

can use the same principle to propose an upward biased estimator for minj≤i≤nZ fU (p̂i), and

then we will obtain bounds wider than the true bounds. For decision making, perhaps we would

rather have too wide bounds than too narrow bounds. Also note that if we allow σ2→ 0, M

will also decrease to zero, so that Tc will converge to max (µ). Therefore, if Tc is applied to the

MIV bounds, it is still a consistent estimator. Furthermore, since T1 is biased upwards and Tc

is biased downwards, they themselves bound the unbiased estimator of the MIV bounds.

4.4.2 Bootstrap bias correction

Clearly, Tc over-corrects the bias. Is it possible to find an estimator “being just right”? Krei-

der and Pepper (2007) proposed a heuristically motivated bootstrap bias corrected estimator.

This subsection aims to provide a rationale for this correction.

The idea of bootstrap bias correction is to use the bias function to correct the naive esti-

mator. Define

T ∗2 (x) = T1 (x)−B1 (µ) ,

T2 (x) = T1 (x)−B1 (x) .

If T ∗2 were an estimator, it would be unbiased by construction. That is, E [T ∗2 (X)] =

max (µ). However, since T ∗2 contains the unknown µ, it is not computable. The bootstrap treats

the sample as if it represents the bootstrap population, evaluating the bias as E
[
T1

(
X̃
)]
−

max (x), where X̃ ∼ N
(
x,σ2

)
. Analytically, this is equivalent to replacing B1 (µ) with B1 (x),

so that T2 is the bootstrap bias corrected estimator. Unfortunately, T2 is not unbiased unless

we have

E [B1 (X)] = B1 (µ) .

To further analyze the bias, define the second-level bias function B2 : Rj → R such that

B2 (µ) = E [T2 (X)]−max (µ) .

B2 (·) has the following property:

Fact 4.5. B2 (µ) < B1 (µ), ∀µ∈ Rj.
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Proof. See appendix.

Fact 4.5 justifies the usage of the bootstrap bias correction since the upward bias of T1 will

be reduced after the bootstrap correction. However, in general it cannot eliminate the bias. It

is helpful to consider the case when µ1 = ... = µj . As suggested in the proof of Proposition 4.4,

B1 (µ) has already attained its maximum, while E [B1 (X)] is the weighted average of B1 (·)

evaluated at every realization of X with the weight given by the normal p.d.f. φ
(
x;µ,σ2

)
. So

we have B2 (µ) = B1 (µ) − E [B1 (X)] > 0. In that case, positive bias still exists after the

bootstrap. Furthermore, it is possible that the bootstrap over-corrects the upward bias since

B1 (µ) might be smaller than E [B1 (X)] for some µ. For illustration, Figure 4.2 plots the two

levels of bias functions when j = 2. We set σ2
1 = 1, σ2

2 = 1. Since only the difference between

µ1 and µ2 matters, we normalize µ1 = 0 and plot B1, B2 against different values of µ2. As

we can see, i) when µ2 goes to infinity or minus infinity, both B1and B2 approach zero; ii) the

largest bias occurs when µ2 = 0; iii) the B2 curve always lies below the B1 curve; iv) though

B1 is always positive, there is a region that B2 is slightly negative, which implies there is a

possibility that the one-level bootstrap may over-correct the bias.

4.4.3 Multi-level bootstrap correction

Since one level of bootstrap estimator T2 does not eliminate the bias, a natural extension

is using its bias B2 to further correct T2. Define

T ∗3 (x) = T2 (x)−B2 (µ) ,

T3 (x) = T2 (x)−B2 (x) .

Again, if T ∗3 were an estimator, it would be unbiased by construction. However, our inability

to evaluate B2 (·) at the right point, namely µ, forces us to compute B2 (x) instead. In essence,

we treat the sample x as the bootstrap population and evaluate B2 (x) = B1 (x)−E
[
B1

(
X̃
)]

,

where X̃ ∼ N
(
x,σ2

)
. Since evaluating B1 (·) is equivalent to one level of bootstrap, evaluating

B2 (·) can be viewed as doubling the bootstrap. Clearly, the estimator T3 is not unbiased unless
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we have

E [B2 (X)] = B2 (µ) .

The effect of bias reduction depends on the functional form of the bias function as well as

the discrepancy between x and µ. The latter is unknown, and we cannot expect the realization

x happens to be µ in the finite sample. However, the bias function is under control in the

sense that if B1 (·) were a linear function, T2 would be unbiased regardless of the unknown

µ. Similarly, if B2 (·) were a linear function, T3 would be unbiased. We double the bootstrap

because we hope B2 (·) ensembles more linearity. This raises two questions: Is B2 (·) flatter than

B1 (·)? If we proceed to higher level of the bootstrap, will we eventually obtain an unbiased

estimator?

Define the higher-level bias function and bias corrected estimator as

Bi (µ) = E [Ti (X)]−max (µ)

= Bi−1 (µ)− E [Bi−1 (X)] ,

Ti+1 (x) = Ti (x)−Bi (x) ,

for i = 3, 4, 5, ...

If we are willing to make an additional assumption, we have an answer to the above two

questions.

Assumption 4.3. B1 (µ) can be well approximated by a polynomial.

There is a need to justify this assumption. Note that B1 (µ) is a continuous, but not

differentiable function in that max (·) is not differentiable. The Taylor theorem of polynomial

approximation does not apply. However, in Eq. (4.2) and Eq. (4.4), fL (pi) is bounded by

[y1, ynY ] and [0, 1] respectively. Therefore, µ is bounded. By the Stone-Weierstrass theorem,

the bias function B1 (µ) can be uniformly approximated by a polynomial.

Proposition 4.6. Suppose B1 (µ) is a polynomial of order d, where d ≥ 2, then B2 (µ) is

a polynomial of order d − 2. Each level of bootstrap will reduce the polynomial order by 2

successively. Bias can be eliminated after
[
d
2

]
levels of bootstraps, where [·] refers to the operator

of taking integers.
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Proof. See appendix.

Let us illustrate this property with a numerical example. Consider two independent normal

variates Xi ∼ N
(
µi, σ

2
i

)
, i = 1, 2. Assume B1 (µ) = 2µ5

1µ
6
2, a polynomial of order 11.

E [B1 (X)] = 2E
(
X5

1

)
E
(
X6

2

)
= 2

(
µ5

1 + 10σ2
1µ

3
1 + 15σ4

1µ1

)
·
(
µ6

2 + 15σ2
2µ

4
2 + 45σ4

2µ
2
2 + 15σ6

2

)
When B1 (µ)−E [B1 (X)], the leading term 2µ5

1µ
6
2 cancels, and there are no terms of order

10 like µ5
1µ

5
2, µ4

1µ
6
2. Therefore, B2 (µ) is reduced to a polynomial of order 9. If we forward the

bootstrap to higher levels, then B3 (µ) will be a polynomial of order 7, and B4 (µ) of order 5,

etc. Eventually Bi (µ) will be of order one or zero. E [Bi (X)] = Bi (µ) is satisfied, and Ti+1 (x)

becomes an unbiased estimator. In other words, d rounds of the bootstraps can correct the

bias for polynomial B1 (µ) of order up to 2d.

4.4.4 Simultaneous bootstrap

The upper level bias function Bi (·) is constructed by the expectation of the lower level bias

function E [Bi−1 (·)], which has to be evaluated with simulation. The nested, iterative simula-

tion suffers from the curse of dimensionality, and practically we are unable to proceed beyond

double or triple bootstraps. To resolve the computational difficulty, we propose a simultane-

ous bootstrap algorithm which can conduct many level of bootstrap correction with affordable

computational costs. Davidson and MacKinnon (2002, 2007) provide a similar procedure which

they refer to as “fast double bootstrap”.

The rationale for the simultaneous bootstrap comes from the identity

Eξ
{
Eη|ξ [g (ξ, η)]

}
= Eξ,η [g (ξ, η)] ,

for arbitrary random variables ξ, η and real valued function g : R2 → R, where the subscript in

E (·) explicitly indicates random variables for which the expectation operator applies.

Suppose E (·) must be evaluated with simulation. The left hand side of that identity

prescribes a nested procedure. In the first step we draw a ξ. Conditional on this value of ξ, we
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draw thousands of η, and then average g (ξ, η). In the second step, we repeat the first step with

thousands of ξ, and then average the averaged g (ξ, η). However, the right hand side prescribes

a simultaneous procedure such that we draw (ξ, η) from their joint distribution, and take the

average of g (ξ, η).

Given the same computational costs measured as the number of visits to g (ξ, η), the lat-

ter procedure provides a more accurate approximation. This is because in the simultaneous

simulation procedure draws of the pair (ξ, η) are independent, while in the nested simulation

the same draw of ξ needs to be used for multiple times, which induces positive correlation and

larger variance. To formalize this idea, we present the following proposition.

Proposition 4.7 (Efficiency of simultaneous simulation). Let the simulator for Eξ,η [g (ξ, η)]

be

S1 =
1

N2

N2∑
i=1

g (ξi, ηi) ,

where {ξi, ηi}N
2

i=1 are i.i.d. draws from the joint distribution of (ξ, η).

Let the simulator for Eξ
{
Eη|ξ [g (ξ, η)]

}
be

S2 =
1

N

N∑
j=1

[
1

N

N∑
k=1

g (ξj , ηj,k)

]
,

where {ξj}Nj=1 are i.i.d. draws from the marginal distribution of ξ, while {ηj,k}Nk=1 are i.i.d.

draws from the conditional distribution of η |(ξ = ξj) , j = 1, ..., N .

Then we have

E (S1) = E (S2) ,

V ar (S1) ≤ V ar (S2) ,

with equality of variance iff Eη|ξ [g (ξ, η)] = Eξ,η [g (ξ, η)] for all realizations of ξ.

Proof. See appendix.

To illustrate the efficiency of the simultaneous simulation relative to the nested simulation,

consider a simple numerical example.

Let (ξ, η) ∼ N
(
0, 0, 12, 12, 0.5

)
, g (ξ, η) = ξ + η, N = 10.
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Then V ar (S1) = V ar
[

1
100

∑100
i=1 (ξi + ηi)

]
= 3

100 ,

but V ar (S2) = V ar
[

1
100

∑10
j=1

∑10
k=1 (ξj + ηj,k)

]
= 21

100 .

We see that the nested simulation has a variance seven times larger than the simultaneous

procedure, given 100 visits to g (ξ, η) in both procedures. Even if we change the correlation

of (ξ, η) from 0.5 to 0, nested simulation still has a larger variance. In that case, we have

V ar (S1) = 2
100 , and V ar (S2) = 11

100 . The inflation of variance is due to the fact that the same

draw of ξj has to be used 10 times in nested simulation.

Generally speaking, the simultaneous simulation will substantially improve the quality of

the simulator. The only case of no improvement is that the conditional expectation is identical

to the unconditional expectation for all realizations of the variable being conditioned on. To

give a example, consider (ξ, η) ∼ N
(
0, 0, 12, 12, 0.5

)
with g (ξ, η) = ξη. In that case, V ar (S1) =

V ar (S2) = 5
1000 . However, once (ξ, η) have non-zero means, there will be improvement.

The results can be extended to multivariate and vector-valued random variables. We have

the identity

Eξ1Eξ2|ξ1 . . . Eξn|ξn−1...ξ1 g (ξ1, ..., ξn) = Eξ1,...,ξn [g (ξ1, ..., ξn)] ,

for arbitrary vector-valued random variables ξ1, ..., ξn and real valued function g.

Again, the left hand side prescribes a multi-level nested simulation procedure, while the

right hand side suggests a simultaneous simulation algorithm. The inefficiency of the nested

procedure comes from the multiple usage of the same draw of ξn−1, and of ξn−2, ..., and worst

of all, of ξ1.

Multi-level bootstrap bias correction is a direct application of the above results.

Though B1 (·) might be evaluated by analytic formula or deterministic quadrature, B2 (·),

B3 (·), etc. need to be evaluated by simulation. For example, consider evaluating B3 (x):

B3 (x) = B2 (x)− EXB2 (X)

= [B1 (x)− EXB1 (X)]− EX

[
B1 (X)− E

X̃|XB1

(
X̃
)]

= EXEX̃|X

{
[B1 (x)−B1 (X)]−

[
B1 (X)−B1

(
X̃
)]}

= E
X,X̃

[
g
(
X,X̃

)]
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where X ∼ N
(
x,σ2

)
, X̃ |(X = y) ∼ N

(
y, σ2

)
. g
(
X,X̃

)
= [B1 (x)−B1 (X)]−

[
B1 (X)−B1

(
X̃
)]

.

The simultaneous procedure for B3 (x) takes the following steps:

First, sample a pair (y, z) from the joint distribution of
(
X,X̃

)
. The easiest way is the

method of composition, that is, to sample y from N
(
x, σ2

)
, and then sample z from N

(
y,σ2

)
.

Second, evaluate g (y, z), which is a difference of differenced B1 (·).

Third, repeat the first and second step, and average the results.

A higher order bias function Bi (·), i > 3 can be simultaneously simulated in the same

way. The first step is a hierarchical sampling of normal variates. The second step is a multiple

difference of B1 (·) evaluated at the obtained sample.

From the perspective of computation, instead of being evaluated directly, B1 (·) may be

treated as another level (that is, the bottom level) of the simultaneous simulation. It is less

precise, but much faster. The saved computation time can be used for a larger scale simulation,

which improves the precision of all levels of bootstraps. Given the same computation costs

measured in CPU time, whether the gains outweighs the loss is a practical issue.

4.5 Monte Carlo evidence

In this section, we replicate the Monte Carlo experiment in Manski and Pepper (2009), with

multi-level bootstrap added to further reduce the bias. The experiment simulates the MIV

lower bound of the treatment response E (Yt |Z = zj ) as in Eq. (4.1). The joint distribution

of (Y,D,Z) is specified in the identical way as in Manski and Pepper (2009). The MIV Z has

a categorical distribution with M equal-probability mass points
{

1
M ,

2
M , ..., 1

}
. The treatment

variable D = I (Z + ε > 0), where ε ∼ N (0, 1). The response variable Y follows N
(
0, σ2

)
censored to (−1.96, 1.96). With a random sample of n observations, we evaluate the Monte

Carlo distribution of the analogue MIV bound for E (Y1 |Z = 1) with 1000 repetitions.

Our bootstrap correction algorithm assumes normality as well as fixed variances. The finite-

sample variances are computed from the analogue version of the formula in Proposition 4.3.

Note that there is no need to discretize Y when we apply that formula since analogue conditional

variance can be used. This is advantageous to the asymptotic variances given by Proposition
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4.2, where we have to discretize every variable and calculate the gradients. Nevertheless, the

computed variances are close regardless of the approach.

Once we obtain the variances, we apply the simultaneous multi-level bootstrap procedure

to correct the bias. Simulation results of the first four levels of bootstraps on the basis of

100000 draws are presented in Table 4.1. Each column is an experiment with selected values

of M,σ2, n. The fourth row displays the biases of the raw analogue estimator (T1), which

are comparable to Table 1 in Manski and Pepper (2009). The fifth row shows the biases

of first-level bootstrap corrected estimator (T2), comparable to their Table 2 in Manski and

Pepper (2009). The following rows show the biases of second, third, fourth levels of bootstrap

corrected estimators (T3, T4, T5). The last row presents the biases of the conservative estimator

(Tc), which is biased downwards.

Our results of the biases of T1 and T2 are very close to those reported by Manski and Pepper

(2009). The slight difference might due to the fact that they used nonparametric bootstrap

(resampling from the empirical distribution) while we use parametric bootstrap (resampling

from the normal distribution with estimated variance). The most important new result is

that T3, T4, T5 have smaller biases. For example, in the setting M = 8, σ2 = 25, n = 100,

the analogue estimator T1 has a huge bias of 0.55. The first level bootstrap reduces the bias

to 0.22, but the bias is still relatively large. As predicted by Proposition 4.6, higher level of

bootstrapped estimator T3, T4, T5 further improve the estimator with biases of 0.15, 0.11, 0.09

respectively. In fact, in most M,σ2, n settings the simulated biases are monotone decreasing

as the bootstrap is forwarded to a higher level.

Also note that when the bias has already achieved a tiny level (compared to the numerical

standard errors of simulation), a further bootstrap may not improve the estimator any more,

but there is also no sign of deterioration. This observation is in line with Proposition 4.6, which

indicates that d rounds of bootstraps can correct the bias for polynomial B1 (µ) of order up to

2d. After that, the bias function becomes a constant with no improvement afterwards. This

happens mostly in settings where n = 1000. In those cases, since the raw analogue estimator

is consistent, the finite sample bias of T1 is already small. We cannot expect that a multi-level

bootstrap will eliminate the bias because high dimensional simulation itself introduces non-
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negligible error. As a practical suggestion, we recommend more levels of bootstrap correction

when the sample size is small, but one or two levels of bootstrap may suffice for a large dataset.

Of course, increasing simulation draws will make higher level bootstrap bias correction more

reliable, if we can afford the computation costs.

The simulation results also suggest the usefulness of the conservative estimator Tc. If we

prefer some wider bounds than the true bounds and are not willing to resort to any bootstrap

correction, we may use the conservative estimator. For M = 4, the magnitude of downward

bias induced by Tc is relatively larger than the magnitude of upward bias caused by T1, though

still on the same scale. For M = 8, the absolute size of bias are similar between Tc and T1.

Furthermore, as n becomes larger, Tc decreases as well, which suggests that in large sample Tc

offers a cheap but effective solution to the problematic analogue MIV bounds.

4.6 An application to disability misreporting identification

In this section, we reconsider the empirical study of Kreider and Pepper (2007) on the

employment gap between disabled and non-disabled persons. The employment gap is defined

as

P (L = 1 |W = 1)− P (L = 1 |W = 0)

=
∑

P (Z = zj) · [P (L = 1 |W = 1, Z = zj )− P (L = 1 |W = 0, Z = zj )] ,

where the MIV bounds of P (L = 1 |W = 1, Z = zj ) is given by Eq. (4.4), and the bounds of

P (L = 1 |W = 0, Z = zj ) can be formulated similarly.

Kreider and Pepper (2007) analyze two datasets: 1992-93 Health and Retirement Study

(HRS) and 1996 Survey of Income and Program Participation (SIPP) with sample sizes 12,503

and 29,807 respectively. Respondents’ employment status (L), reported disability status (X)

and grouped age (Z) can be directly observed in the data. As for the verification status (Y ), it

depends on how researchers use prior information to classify the verified group. They consider

five different ways to define the verified subpopulation: a) disability beneficiaries; b) those

verified in Wave 2; c) gainfully employed workers; d) those claiming no disability in the current
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wave; e) all of the above. Readers are referred to Kreider and Pepper (2007, p.435) for the

detailed definition of subgroups.

From the data, the analogue joint probability of (L,X, Y, Z) is obtained, and then the

analogue bounds of employment gap are computed. Then we use simultaneous multi-level

bootstraps to correct the biases. The estimated bounds are presented in Table 4.2. Our

results on the raw analogue bounds and first-level bootstrap corrected bounds (T1 and T2)

are almost identical to those reported by Kreider and Pepper (2007) in their Table 4, despite

that they used the standard non-parametric bootstrap and we use the normal distribution with

estimated variances to correct the biases. This is because the current sample size is large, and

the estimated probability vector is well approximated by the multivariate normal variates. As

a result, our parametric bootstrap works well.

In the finite sample, the raw analogue bounds are narrower than the true bounds on average.

After the bootstrap correction, the bounds become wider. It seems that the first-level boot-

strap does not fully remove the bias since higher order bootstraps further widen the estimated

bounds. This is most apparent for the HRS data. For example, in the beneficiaries verification

scenario the analogue bounds are [−0.959, 0.809], the first-level bootstrap magnifies the bounds

to [−0.971, 0.830], and further bootstraps expand them to [−0.975, 0.836] and [−0.978, 0.839],

and so on. Of course the speed of expansion decreases with the level of bootstraps. As an

empirical guide, when the expansion mitigates, it is better to stop increasing the bootstrap

levels. For the SIPP data, the sample size is twice as large as that of the HRS data. Therefore,

the speed of bounds expansion is modest. It seems that one or two levels of bootstraps suffices

to remove most of the biases.

It is worth mentioning that the conservative estimator Tc provides the widest bounds. This

is not surprising since the conservative lower (upper) bound is biased downwards (upwards).

However, it is not too wide to be informative. Whenever the raw analogue bounds and boot-

strap corrected bounds are indecisive on the sign of the employment gap, so are conservative

bounds. Only in the last case, the analogue estimator indicates that the employment gap in the

SIPP data is negative and bounded by [−0.413,−0.224]. Three levels of bootstraps widen the

bounds to [−0.447,−0.199], and the conservative estimator also suggests the gap is negative
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and bounded by [−0.482,−0.131].

4.7 Conclusion

In practice, the MIV assumption is useful in partial identification of treatment effects in that

an MIV is easier to provide and justify than a standard instrumental variable. Implementation

of an MIV consists of two steps. First, we obtain the worse-case bounds conditional on each

value of an MIV. Second, the maximum (minimum) of the worst-case bounds corresponding to

the smaller (larger) MIV values than the current MIV value yields sharp lower (upper) MIV

bounds on the treatment effect. Unfortunately, as noted by Manski and Pepper (2000), the

maximum and minimum operators make the analogue bounds narrower than the true bounds

in finite samples. This problem is more acute when i) the worse-case bounds under each value

of an MIV are close to each other; ii) the variances of analogue bounds are large; and iii) the

number of discrete MIV values is large. In such cases, it is sensible to adjust the analogue

estimator so as to avoid over-optimistic inference.

This paper provides two new types of analogue estimator adjustment. The first derives

a conservative estimator that is obtained by subtracting the largest possible bias from the

analogue estimator. This approach is most useful when the sample size is large so that the

variances of the analogue bounds are small. In that case, the largest possible bias is small,

and therefore the conservative bounds are likely to remain informative. Another virtue of the

conservative estimator is its inexpensiveness of computation.

The second solution introduces a computationally feasible multi-level bootstrap correction.

It is shown that one level of the bootstrap cannot eliminate the bias in general, and there

is also a possibility of over-correction. This inadequacy of the single bootstrap leaves room

for higher level bootstraps, which do not necessarily suffer from the curse of dimensionality

in that a simultaneous simulation strategy can make multi-level bootstraps computationally

feasible. From a practical side, a practitioner simply inputs the analogue worse-case bounds

and standard errors for each value of the MIV, and the simulation outputs include the corrected

estimators after each level of bootstrap. From a theoretical perspective, under an assumption

that the bias function can be well approximated by a polynomial, each level of bootstrap is



www.manaraa.com

79

shown to successively reduce the polynomial order of the bias function. Monte Carlo evidence

provides strong support for the effectiveness of the multi-level bootstrap correction.
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n 100 100 100 100 100 100
M 4 4 4 8 8 8
σ2 1 4 25 1 4 25
T1 0.10 0.15 0.20 0.31 0.42 0.53
T2 0.01 0.03 0.06 0.09 0.14 0.21
T3 0.00 0.01 0.03 0.04 0.07 0.13
T4 -0.01 0.00 0.02 0.02 0.03 0.09
T5 -0.01 -0.01 0.01 0.00 0.01 0.07
Tc -0.15 -0.16 -0.17 -0.22 -0.23 -0.23

n 500 500 500 500 500 500
M 4 4 4 8 8 8
σ2 1 4 25 1 4 25
T1 0.02 0.02 0.04 0.08 0.12 0.15
T2 0.00 -0.01 -0.01 0.01 0.03 0.04
T3 -0.01 -0.02 -0.02 0.00 0.01 0.01
T4 -0.01 -0.02 -0.02 0.00 0.00 0.00
T5 -0.01 -0.02 -0.02 -0.01 0.00 0.00
Tc -0.09 -0.11 -0.12 -0.14 -0.15 -0.16

n 1000 1000 1000 1000 1000 1000
M 4 4 4 8 8 8
σ2 1 4 25 1 4 25
T1 0.00 0.01 0.02 0.04 0.07 0.09
T2 -0.01 -0.01 0.00 0.00 0.01 0.02
T3 0.00 -0.01 0.00 0.00 0.01 0.01
T4 0.00 -0.01 0.00 -0.01 0.00 0.01
T5 0.00 -0.01 0.00 -0.01 0.00 0.01
Tc -0.07 -0.09 -0.09 -0.11 -0.12 -0.13

T1 is the average bias of the naive estimator (maximum of the sample). T2 is the average bias of first-level bootstrap

corrected estimator. T3, T4, T5 are biases of second-, third-, fourth- level bootstrap corrected estimators. Tc is the bias

of the (downward biased) conservative estimator. Two decimals are retained since the average numerical standard error

is 0.007 (maximum 0.022, minimum 0.002)

Table 4.1 Bias of analogue estimate of the MIV lower bound with the bootstrap correction
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HRS Beneficiaries Wave 2 Workers No disability All of above
T1 [-0.959, 0.809] [-0.741, 0.645] [-0.811, 0.350] [-0.760, 0.350] [-0.402, -0.341]
T2 [-0.971, 0.830] [-0.760, 0.672] [-0.824, 0.358] [-0.767, 0.358] [-0.430, -0.307]
T3 [-0.975, 0.836] [-0.763, 0.681] [-0.826, 0.359] [-0.766, 0.359] [-0.434, -0.302]
T4 [-0.978, 0.839] [-0.764, 0.688] [-0.826, 0.359] [-0.766, 0.359] [-0.434, -0.300]
Tc [-0.980, 0.857] [-0.794, 0.704] [-0.847, 0.383] [-0.788, 0.383] [-0.492, -0.217]

SIPP Beneficiaries Wave 2 Workers No disability All of above
T1 [-0.967, 0.908] [-0.793, 0.869] [-0.784, 0.318] [-0.781, 0.318] [-0.413, -0.224]
T2 [-0.974, 0.915] [-0.804, 0.880] [-0.794, 0.322] [-0.785, 0.322] [-0.437, -0.202]
T3 [-0.977, 0.916] [-0.808, 0.882] [-0.795, 0.322] [-0.786, 0.322] [-0.444, -0.199]
T4 [-0.978, 0.917] [-0.811, 0.883] [-0.795, 0.322] [-0.786, 0.322] [-0.447, -0.199]
Tc [-0.982, 0.925] [-0.820, 0.900] [-0.816, 0.346] [-0.797, 0.346] [-0.482, -0.131]

Beneficiaries, Wave 2, Workers, No disability are defined identically as in Kreider and Pepper (2007).

T1 is the raw analogue estimator,that is,maximum of the sample, comparable to Table 4 in Kreider

and Pepper (2007). T2 is first-level bootstrap corrected estimator, comparable to Table 4 in Kreider

and Pepper (2007). T3 is second-level bootstrap corrected estimator. T4 is the third-level bootstrap

corrected estimator. The upper panel shows the results for the HRS dataset, and the lower panel for

SIPP dataset.

Table 4.2 MIV bounds of employment gap with the bootstrap correction
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The first-level bias (B1) is plotted for the case of two normal variates. The two arguments of B1

function is the mean of the two normal variates. We set σ2
1 = 1, σ2

2 = 1.

Figure 4.1 The shape of the bias function after the first level bootstrap
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The first level (B1) and second level (B2) of the bias functions are plotted for the case of two normal

variates. We set σ2
1 = 1, σ2

2 = 1. Since only the difference in mean matters, µ1 is normalized to zero.

As µ2 moves, the magnitude of the first-level bias and the second-level bias change accordingly.

However, the B1 curve always lies above the B2 curve. Though B1 is always positive, there is a region

where B2 falls below zero.

Figure 4.2 The shape of the bias functions after two levels of bootstrap
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CHAPTER 5. GENERAL CONCLUSION AND DISCUSSION

Missing data is a common problem, making it difficult to draw an accurate and complete

picture of the economy. However, there are efficient methods handling imperfectly observed

data if its generating process and missing mechanism is known to the researcher. In this

dissertation, temporal and cross-sectional aggregations are framed in two parametric models,

namely a VAR model in Chapter 2 and a two-equation imputation model in Chapter 3. There

are minor differences between them. First, the former is more symmetric with respective to

regressors than the latter. Second, the former has autocorrelations in variables while the latter

does not. Apart from these differences on the surface, the two models are identical in the sense

that we use the same idea to handle the data aggregation. In summary, we solve the problem

by two steps. First, explore the joint distribution of all disaggregated variables. Second,

marginalize unobserved variables out of the joint distribution. In the first step, disaggregated

variables have their own joint distribution depending on the model structure. The two-equation

imputation model does not have autocorrelations in variables, so the covariance matrix is block-

diagonal. The VAR model has both autocorrelations and crosscorrelations among variables,

but the covariance matrix is still straightforward to derive for a stationary VAR process. In

the second step, the marginalization is tractable for multivariate normal random variables, for

the observed aggregated variables are simply the linear combinations of these disaggregated

variables. As a result, we obtain the explicit likelihood function corresponding to the observed

data. No matter whether the inference is based on the classical maximum likelihood or on the

Bayesian data augmentation simulation, we mainly use the information conveyed by the joint

distribution of the observed data.

One concern is departure from normality. In that circumstance, to marginalize the latent

disaggregated variables out of the likelihood function may involve an integral that does not lead
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to a closed-form solution. However, if the underlying distribution is finite Gaussian mixtures,

Markov switching Gaussian distributions, scale mixtures such as student-t, the problem is

still tractable. In these cases, normality is not completely lost in the sense that conditional

on latent regimes/states, the joint distribution of disaggregated variables is still multivariate

normal. The Bayesian approach will have an advantage addressing those complications in that

the Gibbs sampler handles posterior disaggregated variables by conditioning on all the other

model parameters and latent components in the model.

Another concern is the model uncertainty. The validity of our methods relies on the correct

specification of the probabilistic model. A right model is crucial for an insightful analysis of

temporal or cross-sectional aggregation issues. In reality, a researcher often does not know which

model best describes the data generating process of the disaggregated variables. Uncertainties

on the model can be handled in the parametric framework through the Bayesian model selection

or averaging. Before an empirical study, a researcher is likely to conceive candidate models

that plausibly generate the data. After observing the data, the likelihood function under each

candidate model can serve as the criterion for model selection or the weight for the model

averaging. Note that our method of handling data aggregation can be applied to many types

of regression-type models. In principle, the method can be applied to each candidate model to

find the likelihood conditional on the model. Then an eclectic inference or prediction can be

made through the model averaging.

Chapter 4 discusses another type of missing data due to the counterfactual outcomes. We

propose a multi-level bootstrap solution to the finite sample bias caused by the MIV identifi-

cation of the counterfactuals. Our contribution is that the mechanism of bias correction is not

based on asymptotic refinement of the bootstrapped estimator, but on a direct comparison of

the bias functions before and after the bootstrap correction. The usefulness of our approach is

supported by Monte Carlo studies. However, more justifications, or perhaps relaxation, on the

polynomial approximation to the bias function are left for future research.
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APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 2

A.1 Proof of Proposition 2.1

Let Z ≡



Z∗p

Z∗p+1

· · ·

Z∗T


, Z̃ ≡



Z∗p

Z∗p+1 − FZ∗p

· · ·

Z∗T − FZ∗T−1


=



Z∗p

ep+1

· · ·

eT


.

By the normality and independence assumption of Z∗p, ep+1, ..., eT , we have Z̃ ∼ N
(
0,∆̃

)
,

where

∆̃ =



B

∆

. . .

∆


.

Construct a kp (T − p+ 1)-by-kp (T − p+ 1) matrix L =



I

−F I

. . .

−F I


, and

its inverse is given by L−1 =



I

F I

· · · . . .

FT−p FT−p−1 F I


. Clearly Z̃ = LZ. It follows

that Z = L−1Z̃ and Z ∼N
[
0,
(
L−1

)
∆̃
(
L−1

)′]
. After a little algebra and repeated use of the
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identity B = FBF′ + ∆, we have

(
L−1

)
∆̃
(
L−1

)′
=



B (FB)′ · · ·
(
FT−pB

)′
FB B · · ·

(
FT−p−1B

)′
...

. . .

FT−pB FT−p−1B · · · B


.

The structure of
(
L−1

)
∆̃
(
L−1

)′
implies that the joint distribution of Z∗t , ...,Z

∗
t+s is identical

to that of Z∗t+j , ...,Z
∗
t+s+j for all t, s, j, hence the strict stationarity of {Z∗t }

T
t=p.

Furthermore, E
(
Z∗tZ

∗′
t−1

)
= FB, and Γp = E

[
(Y∗t − µ1)

(
Y∗t−p − µ1

)′]
is the submatrix

of FB selected by its first k rows and last k columns. When eigenvalues of F all lie inside the

unit circle, B is a well-defined covariance matrix and takes the form

B =



Γ0 Γ1 ... Γp−1

Γ′1 Γ0 ... Γp−2

...

Γ′p−1 Γ′p−2 ... Γ0


.

It follows that Γp =
∑p

i=1 ΦiΓp−i.

Similarly, Γp+1 is the submatrix of F2B by extracting its first k rows and last k columns.

The first k rows of F is (Φ1, ...,Φp) and the last k columns of FB is
(
Γ′p, ...,Γ

′
1

)′
. Their inner

product is Γp+1 =
∑p

i=1 ΦiΓp+1−i. By induction, Γj is the submatrix of Fj−p+1B by extracting

its first k rows and last k columns, which is the inner product of the first k rows of F and the

last k columns of Fj−pB. So we have Γj =
∑p

i=1 ΦiΓj−i.

A.2 Proof of Proposition 2.2

For notational convenience, define Yt
s = {Y∗s , ...,Y∗t }. Let

Y∗t = c +

p∑
i=1

ΦiY
∗
t−i + εt.

This data generating process suggests

p
(
Y∗t
∣∣Yt−1

t−p
)

= p
(
Y∗t

∣∣∣Yt−1
t−p−1

)
= ... = p

(
Y∗t
∣∣Yt−1

1

)
,
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since their distributions are all equal to the distribution of εt with the mean shifted by c +∑p
i=1 ΦiY

∗
t−i. Then we have

p
(
Yt
s

∣∣Ys−1
1 ,YT

t+1

)
∝ p

(
YT

1

)
= p

(
Ys−1

1

)
·
t+p∏
j=s

p
(
Y∗j

∣∣∣Yj−1
j−p

)
· p
(
YT
t+p+1

∣∣∣Yt+p
t+1

)

∝
t+p∏
j=s

p
(
Y∗j

∣∣∣Yj−1
j−p

)
.

Similarly,

p
(
Yt
s

∣∣∣Ys−1
s−p,Y

t+p
t+1

)
∝ p

(
Yt+p
s−p

)
= p

(
Ys−1
s−p
)
·
t+p∏
j=s

p
(
Y∗j

∣∣∣Yj−1
j−p

)

∝
t+p∏
j=s

p
(
Y∗j

∣∣∣Yj−1
j−p

)
.

Both p
(
Yt
s

∣∣Ys−1
1 ,YT

t+1

)
and p

(
Yt
s

∣∣∣Ys−1
s−p,Y

t+p
t+1

)
are proper. If they are proportional to the

same expression, they must be equal.

A.3 The State space form of the varied frequency VAR

Let k dimensional latent {Y∗t }
T
t=1 follow a stationary VAR(p) process:

Y∗t =

p∑
i=1

ΦiY
∗
t−i + εt,

where εt ∼ N (0,Ω). For simplicity, consider the case of balanced temporal aggregation.

Partition Y∗t into Y∗1,t and Y∗2,t, where Y∗1,t is fully observed but Y∗2,t is only observed every

q period. In other words, Y1,t = Y∗1,t, for t = 1, ..., T , but Y2,t =
∑q−1

j=0 Y∗2,t−j , for t =

q, 2q, 3q, ..., T . To write the system into the state space form, we keep track of r ≡ max (p, q)

recent periods of Y∗t as the state vector. Let ξt =
(
Y∗′t , ...,Y

∗′
t−r+1

)′
, F =

 Φ

C

, where

Φ = (Φ1, ...,Φr), Φi = 0, i > p, C =

(
Ik(r−1) 0k(r−1),k

)
. It follows that the transition
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equation of the state vector is

ξt = Fξt−1 + et,

where et = (εt,0...,0)′. Clearly et ∼ N (0,∆), ∆=

 Ω

0k(r−1),k(r−1)

. On the other hand,

the measurement equation has time-varying parameters and dimensions. It takes the form of

Zt = Htξt.

For t = q, 2q, 3q, ..., T , we have Zt =

 Y1,t

Y2,t

, Ht =

 Ik 0k,k(q−1) 0k,k(r−q)

Ik Dk,k(q−1) 0k,k(r−q)

, where

Dk,k(q−1) = (Ik, ..., Ik).

For t 6= q, 2q, 3q, ..., T , we have Zt = Y1,t, Ht =

(
Ik 0k,k(q−1) 0k,k(r−q)

)
.

Then the standard Kalman filter can be used to recursively evaluate the likelihood. The

forward recursion consists of the prediction step and update step. The starting point is an

assumption on the distribution of the initial state. Assume ξ0 ∼ N (c0,Q0). Denote Zt
1 =

(Z′1, ...,Z
′
t)
′. Before the information of Date 1 comes in, the information set Z0

1 is empty, so

that ξ0

∣∣Z0
1 ∼ N

(
ξ̂0|0 ,P 0|0

)
, where ξ̂0|0 = c0, P 0|0 = Q0. At Date t (t = 1, ..., T ), we first

predict ξt and Zt conditional on the information set of Date t− 1. ξt

Zt

 =

 F

HtF

 ξt−1 +

 et

Htet

 ,

It follows that ξt

Zt

∣∣Zt−1
1 ∼ N


 ξ̂t|t−1

Ẑt|t−1

 ,

 P t|t−1 Lt|t−1

L
′

t|t−1 Dt|t−1


 ,

where

ξ̂t|t−1 = F ξ̂t−1|t−1 ,

Ẑt|t−1 = Htξ̂t|t−1 ,

P t|t−1 = FP t−1|t−1F + ∆,

Dt|t−1 = HtP t|t−1H
′
t,

Lt|t−1 = P t|t−1H
′
t.
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Then we update ξt conditional on Zt and Zt−1
1 . It follows that ξt

∣∣Zt
1 ∼ N

(
ξ̂t|t ,P t|t

)
,

where

ξ̂t|t = ξ̂t|t−1 +Lt|t−1

(
Dt|t−1

)−1
(
Zt − Ẑt|t−1

)
,

P t|t = P t|t−1 −Lt|t−1

(
Dt|t−1

)−1
L
′

t|t−1 .

This completes a recursion cycle and the filter proceeds to the next period. One can also

rewrite the recursion formulas in terms of the Kalman gain and Riccati equation by plugging

ξ̂t|t and P t|t back into ξ̂t+1|t and P t+1|t . Once the filter goes through the entire sample

periods, we obtain the likelihood function in its prediction error decomposition form, namely
T∏
t=1

φ
(
Zt; Ẑt|t−1 ,Dt|t−1

)
, where φ (x;µ,Σ) is the the density of N (µ,Σ).

A.4 Simulation studies of varied frequency data

Before we apply the varied frequency data regression on GDP, CPI, federal funds rate

and M1 to study the monetary policy shocks, we first generate some pseudo-data to test the

performance of our algorithm. We consider a four-variate VAR(1) system, and arbitrarily

name the four variates GDP, CPI, federal funds rate and M1 respectively. The data generating

process of the reduced form VAR is specified as follows:

Y t = ΦY t−1 + εt,

where Φ = 0.2 ∗ I4 + 0.1 ∗ 14, E (εtε
′
t) = 0.8 ∗ I4 + 0.2 ∗ 14. The symbol I4 refers to a 4 × 4

identity matrix and 14 is a 4× 4 matrix of ones.

Three thousand observations are generated accordingly. We refer to these observations

latent monthly data. To simulate the monthly-quarterly mixture data, we aggregate the first

variable (GDP) every three periods, leaving observations of the rest variables (CPI, federal

funds rate and M1) intact. To identify the structural model, the recursiveness assumption of

zero contemporaneous effects by Christano (1998) is imposed. The order of the four variates

implies that the Cholesky decomposition can identify federal funds rate shock. In the simulation

study, we already know the true parameters of the VAR model. By inverting the VAR process
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into a VMA process, we obtain the theoretical impulse response function. Note that we are not

interested in the shape of the dynamic response curve per se, since it is just an artificial result

of the pre-set parameters. Instead we want to compare the theoretical curve with the estimated

impulse response curve using the pseudo-data. Figure A.1 plot the theoretical responses of the

four variables to the federal funds shocks.

Then we use the pseudo data to fit two models. The first model is a quarterly data VAR.

Despite the availability of the monthly CPI, federal funds rate and M1 data, we aggregate

them into quarterly frequency, which is aligned with the GDP data. Then the Bayesian version

of the standard VAR model is estimated with these quarterly observations. It is unclear how

to set the lag order of the quarterly VAR model, because in theory aggregation introduces

moving-average disturbances into the process. We nevertheless use the Akaike and Bayesian

information criteria to choose the lag length. Under our data generating process, it seems that

both criteria always suggest one lag is the optimal length. So the quarterly VAR(1) specification

is adopted. Then the estimated VAR process is inverted into its VMA representation, with the

impulse response function plotted in Figure A.2. The solid line represents the sample mean of

the response function at each date, and the two dotted lines are the 95% intervals of highest

posterior density (HPD).

The second model is the varied frequency VAR model that simultaneously uses the quar-

terly GDP data and the monthly CPI, federal funds rate and M1 data. By our data generating

process, we know one lag is the correct choice. Since this is a balanced aggregation, the Gibbs

sampler with blocks is employed to simulate the posterior distribution of the model parame-

ters and latent disaggregated variables. After a several thousand MCMC draws, the sample

from the posterior conditional distribution begins to stabilize, indicating the convergence of

the chain. For accuracy the reported results in Table A.1 and A.2 are based on a hundred

thousand draws with the first half burned in. The sample mean of the posterior draws on

the autoregressive parameters are reasonably close to the pre-set true values, which always fall

within the 95% HPD credible intervals of the posterior distribution of the parameters. The

corresponding impulse response functions as well as the 95% HPD intervals are plotted in Fig-

ure A.3. Compared with Figure A.2, which is the results under the quarterly VAR model, the
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In this simulation study, the reduced form VAR takes the form Y t = ΦY t−1 + εt with

Φ = 0.2 ∗ I4 + 0.1 ∗ 14, E (εtε
′
t) = 0.8 ∗ I4 + 0.2 ∗ 14. Under the recursiveness assumption, the

structural shocks are identified and the theoretical impulse response functions are then plotted. The

names of GDP, CPI, Federal Funds rate and M1 are arbitrary in this exercise.

Figure A.1 Theoretical impulse response function in the simulated VAR system

curves in Figure A.3 is clearly closer to the true impulse response curve. Both the shape and

the magnitude of the dynamic responses resemble the true curves, indicating the usefulness of

the varied frequency VAR approach.
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The quarterly VAR system with lags selected by AIC and BIC is fitted by pseudo quarterly data.

Under the recursiveness assumption, the structural shocks are identified by the Cholesky

decomposition and then the estimated impulse response function is plotted. The names of GDP, CPI,

Federal Funds rate and M1 are arbitrary in the simulation exercises. The solid line plots the posterior

mean of the impulse-response function and the dotted lines are the 95% HPD credible bands. The

results are obtained from a Gibbs sampler of 100000 draws with the first half of draws burned in.

Figure A.2 Dynamic responses to structural shocks with pseudo quarterly data
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The varied frequency VAR system is fitted by pseudo monthly-quarterly mixture data. Under the

recursiveness assumption, the structural shocks are identified by the Cholesky decomposition and then

the estimated impulse response function is plotted. The names of GDP, CPI, Federal Funds rate and

M1 are arbitrary in the simulation exercises. The solid line plots the posterior mean of the

impulse-response function and the dotted lines are the 95% HPD credible bands. The results are

obtained from a Gibbs sampler of 100000 draws with the first half of draws burned in.

Figure A.3 Dynamic responses to structural shocks with pseudo varied frequency data
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0.300 0.100 0.100 0.100

0.304 0.105 0.084 0.146

(0.053) (0.037) (0.038) (0.041)

0.100 0.300 0.100 0.100

0.064 0.313 0.096 0.119

(0.035) (0.019) (0.019) (0.020)

0.100 0.100 0.300 0.100

0.096 0.099 0.282 0.129

(0.035) (0.019) (0.018) (0.021)

0.100 0.100 0.100 0.300

0.064 0.088 0.127 0.318

(0.038) (0.020) (0.019) (0.020)

In this simulation exercise, varied frequency VAR is estimated by the Bayesian approach. The true

autoregressive coefficients are Φ = 0.2 ∗ I4 + 0.1 ∗ 14. The above table is divided into 4-by-4 cells. In

each cell, the first number is the true parameter value. The second number is the posterior mean of

the parameter (Bayesian version of the point estimator) and the third number is the posterior

standard deviation of the parameter (Bayesian version of the standard error). The results are obtained

from a Gibbs sampler of 100000 draws with the first half of draws burned in.

Table A.1 Autoregressive coefficients estimation using the pseudo varied frequency data
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1.000 0.200 0.200 0.200

0.924 0.175 0.152 0.240

(0.084) (0.051) (0.050) (0.055)

0.200 1.000 0.200 0.200

0.175 0.979 0.195 0.175

(0.051) (0.026) (0.018) (0.019)

0.200 0.200 1.000 0.200

0.152 0.195 0.970 0.188

(0.050) (0.018) (0.026) (0.019)

0.200 0.200 0.200 1.000

0.240 0.175 0.188 0.994

(0.055) (0.019) (0.019) (0.026)

In this simulation exercise, varied frequency VAR is estimated by the Bayesian approach. The true

covariance matrix is E (εtε
′
t) = 0.8 ∗ I4 + 0.2 ∗ 14. The above table is divided into 4-by-4 cells. In each

cell, the first number is the true parameter value. The second number is the posterior mean of the

parameter (Bayesian version of the point estimator) and the third number is the posterior standard

deviation of the parameter (Bayesian version of the standard error). The results are obtained from a

Gibbs sampler of 100000 draws with the first half of draws burned in.

Table A.2 Covariance matrix estimation using the pseudo varied frequency data
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APPENDIX B. ADDITIONAL MATERIAL FOR CHAPTER 3

B.1 Proof of Proposition 3.1

Let xi = µi + εi, where εi ∼ N
(
0, σ2

)
.

x =
∑n

i=1 µi + (ε1 + ...+ εn).

Note that (ε1, ..., εn) is n dimensional multivariate normal, and so are the n mean-adjusted

linear combinations (x1, ..., xn−1, x). Then x−n

x

 ∼ N


 µ−n∑n

i=1 µi

 ,

 σ2In−1 σ2ιn−1

σ2ι′n−1 nσ2


 .

It follows that

x−n |x ∼ N

[
µ−n +

1

n

(
x−

n∑
i=1

µi

)
ιn−1, σ

2

(
In−1 −

1

n
ιn−1ι

′
n−1

)]
.

Lastly, conditional on x−n, x, we have xn = x−
∑n−1

i=1 xi.

B.2 Proof of Proposition 3.2

Plugging Eq. (3.2) into Eq. (3.1), we have yt,i

xt,i

 ∼ N


 zt,iαβ + wt,i (βγ + δ)

zt,iα+ wt,iγ

 ,
 (β2σ2

v + σ2
u + 2βσuv

)
βσ2

v + σuv

βσ2
v + σuv σ2

v


 .

It follows that

xt,i |yt,i ∼ N
(
µt,i, σ

2
)

,

where

µt,i = zt,iα+ wt,iγ+
βσ2

v + σuv
β2σ2

v + σ2
u + 2βσuv

[yt,i − zt,iαβ −wt,i (βγ + δ)] ,

σ2 = σ2
v −

(
βσ2

v + σuv
)2 (

β2σ2
v + σ2

u + 2βσuv
)−1

.
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In the presence of the aggregation constraint, we apply Proposition 3.1. The result follows.

An alternative proof proceeds by deriving the joint distribution of
(
y′t,x

′
t,−n, xt

)′
, which

is a 2n dimensional linear combination of (vt,1, ..., vt,n, ut,1, ..., ut,n) and thus still multivariate

normal. Therefore, the conditional normal distribution of xt,−n |yt, xt can be found after some

algebra. The result is the same.

B.3 Comparison of least squares estimators

First, we show that if σuv 6= 0, the minimum MSE estimator is inconsistent. To see this,

we only need to consider the simplest version of the model. Let n = 2; α is a known scalar;

regressors wt,i do not exist. The model becomes:

yt,i = xt,iβ + ut,i,

xt,i = zt,iα+ vt,i,

xt = xt,1 + xt,2.

For the minimum MSE estimator, the imputed value is

x̂t,i = zt,iα+
1

2
[xt − (zt,1α+ zt,2α)]

= zt,iα+
1

2
(vt,1 + vt,2) .

In the second step, we regress

yt,i = x̂t,iβ + εt,i,

where εt,i = ut,i + β
[
vt,i − 1

2 (vt,1 + vt,2)
]
.

The endogeneity of x̂t,i to εt,i does not come from the presence of vt,1, vt,2 in both ex-

pressions, but merely from the correlation between ut,i and vt,i. To see this, define ξ0 =

1
2 (vt,1 + vt,2), and ξi = vt,i − 1

2 (vt,1 + vt,2), i = 1, 2. By change of variable, the joint distribu-

tion of ξ0 and ξ1 is given by

f (ξ0, ξ1) = φ
(
ξ0 + ξ1; 0, σ2

v

)
· φ
(
ξ0 − ξ1; 0, σ2

v

)
· |−2|

∝ exp
[
−σ−2

v

(
ξ2

0 + ξ2
1

)]
.
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So ξ0 and ξ1 are independent and each distributed as N
(
0, 1

2σ
2
v

)
. Similarly, ξ0 and ξ2 are

independent.

However, as long as σuv 6= 0, we have cov (x̂t,i, εt,i) = 1
2σuv, hence the endogenous regressor

and inconsistent estimator, no matter whether OLS or GLS is used.

In fact, the OLS version of the estimator

β̂ =

(
T∑
t=1

n∑
i=1

x̂2
t,i

)−1( T∑
t=1

n∑
i=1

x̂t,iyt,i

)
p−→ β +

1

2
σuv

[
α2Qzz +

1

2
σ2
v

]−1

,

where Qzz = E
(
z2
t,i

)
.

On the other hand, the Dagenais estimator is still consistent. The imputed value is x̃t,i =

zt,iα. Then we regress

yt,i = x̃t,iβ + ε̃t,i,

where ε̃t,i = ut,i + βvt,i, so that cov (x̃t,i, ε̃t,i) = 0, even if σuv 6= 0.

The estimator

β̂ =

(
T∑
t=1

n∑
i=1

x̃2
t,i

)−1( T∑
t=1

n∑
i=1

x̃t,iyt,i

)

= β +

[
T∑
t=1

n∑
i=1

(zt,iα)2

]−1

·

[
T∑
t=1

n∑
i=1

zt,iα (ut,i + βvt,i)

]
,

so that β̂
p→ β and

√
nT
(
β̂ − β

)
d→ N

[
0,
(
α2Qzz

)−1 (
β2σ2

v + σ2
u + 2βσuv

)]
.

Clearly, the asymptotic variance of the Dagenais estimator is increasing with σ2
v . For large

enough σ2
v , it will exceed the variance of all-aggregated-data estimator, which does not use

imputation at all. Therefore, if imputation is of poor quality, there is a possibility that the

all-aggregated-data estimator is preferred to the Dagenais estimator.

B.4 Derivation of aggregation of several variables

By marginalization,

yt,i = zt,i ·A + wt,i ·B+εt,i, εt,i ∼ N (0, C) ,
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where

A =
k∑
s=1

αsβs,

B = δ+

k∑
s=1

γsβs,

C = β′ ·Ω · β,

β = (1, β1, ..., βk)
′ .

Since the disturbance terms are multivariate normal, their (mean adjusted) linear combi-

nations (yt,1, ..., yt,n, x1t, ..., xkt) are also multivariate normal:

yt

x1t

...

xkt


∼ N





zt,i ·A + wt,i ·B

zt · α1 + wt · γ1

...

zt · αk + wt · γk


,

 C · In ιn · (β′ ·Ω·,−1)

Ω′·,−1·β · ι′n n ·Ω−1,−1




,

where Ω·,−1 is formed by deleting the first column of Ω, and Ω−1,−1 is formed by deleting both

first row and column of Ω.

The likelihood can be factorized as

f (yt, x1t, ..., xkt) = f (yt) · f (x1t |yt ) · ... · f
(
xkt
∣∣yt, x1t, ..., x(k−1)t

)
.

Clearly, f (yt) is a multivariate normal density with the mean zt,i ·A + wt,i ·B. Using the

formula of the conditional normal distribution, we note f (x1t |yt ) is a normal density with the

mean being a linear combination of zt, wt, yt. Similarly, f (x2t |yt, x1t ) is a normal density

with the mean being a linear combination of zt, wt, yt, x1t, and f
(
xkt
∣∣yt, x1t, ..., x(k−1)t

)
is

also a normal density with the mean being a linear combination of zt, wt, yt, x1t,..., x(k−1)t.

As a result, the analytic ML estimator can be obtained from k + 1 auxiliary regressions:

Regress yt,i on zt,i, wt,i.

Regress x1t on zt, wt, yt.

Regress x2t on zt, wt, yt, x1t.

... ...

Regress xkt on zt, wt, yt, x1t,..., x(k−1)t.
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Suppose zt,i contains kz variables, wt,i contains kw variables, then the number of reparam-

eterized coefficients are (k + 1) (kz + kw)+ k(k+1)
2 +(k + 1), which are estimated from auxiliary

regressions. By the invariance property of the ML estimator, we can recover β1, ..., βk, δ,

α1, ..., αk, γ1, ..., γk, Ω as long as kz = k.
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APPENDIX C. ADDITIONAL MATERIAL FOR CHAPTER 4

C.1 Proof of Fact 4.1

By the properties of the categorical distribution,

E (vs) = p

Cov (vs) = diag (p)− pp′

Since p̂ = 1
n

∑n
s=1 vs, it is a strongly consistent estimator of p, and the central limit theorem

implies

√
n (p̂− p)

d−→ N
[
0, diag (p)− pp′

]
.

C.2 Proof of Proposition 4.2

The Delta Method implies that

√
n




fL (p̂1)

...

fL (p̂nZ )

−


fL (p1)

...

fL (pnZ )




d−→ N
{
0,G

[
diag (p)− pp′

]
G′
}

,

where G is a block diagonal matrix such that

G =


G1

. . .

GnZ

 .

Since fL is homogeneous of degree zero, Euler’s theorem implies that Gipi = 0, i = 1, ..., nZ .
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It follows that Gpp′G′ = 0. As a result, the covariance matrix simplifies to

G
[
diag (p)− pp′

]
G′ =


G1 · diag (p1) ·G′1

. . .

GnZ · diag (pnZ ) ·G′nZ

 .

In the case of the multivariate normal distribution, zero covariance implies independence.

C.3 Proof of Proposition 4.3

From Eq. (4.1),

fL (pi) = E (Y |Z = zi, D = dt ) · P (D = dt |Z = zi ) + y1 · P (D 6= dt |Z = zi )

= E [Y · I (D = dt) |Z = zi ] + y1 · E [I (D 6= dt) |Z = zi ]

= E (Q |Z = zi )

=

nY∑
k=1

nD∑
m=1

pikm
pi··

qkm.

The last equality is consistent with Eq. (4.2).

Now consider sampling variations. Previously in the paper, we use the encoded vectors

{vs}ns=1 to summarize the sample, which defines p̂ and p̂1, ..., p̂nZ as well as fL (p̂i) accordingly.

We can equivalently use i.i.d. {Zs, Ys, Ds}ns=1 to denote the sample, where the law of (Zs, Ys, Ds)

is identical to the representative triple (Z, Y,D). Also define

Qs = Ys · I (Ds = dt) + y1 · I (Ds 6= dt) .

When p̂i·· = 1
n

∑n
s=1 I (Zs = zi) > 0, the analogue probability estimator fL (p̂i) is well-

defined and can be written as

fL (p̂i) =

nY∑
k=1

nD∑
m=1

[
1
n

∑n
s=1 I (Zs = zi, Ys = yk, Ds = dm)

1
n

∑n
s=1 I (Zs = zi)

qkm

]

=

nY∑
k=1

nD∑
m=1

[∑n
s=1 I (Zs = zi, Qs = qkm)∑n

s=1 I (Zs = zi)
qkm

]

=

∑n
s=1

[∑nY
k=1

∑nD
m=1 qkmI (Qs = qkm)

]
· I (Zs = zi)∑n

s=1 I (Zs = zi)

=

∑n
s=1Qs · I (Zs = zi)∑n
s=1 I (Zs = zi)

≡ f̃L (pi) .
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Note that f̃L (pi) is simply the analogue moment estimator for E (Q |Z = zi ). It indicates

that whether we use analogue probability or analogue moment, the functional form of the

estimator is the same. Working on the variance of f̃L (pi) is easier than directly computing the

variance of fL (p̂i).

To make notations compact, denote θ ≡ fL (pi), θ̃ ≡ f̃L (pi) = fL (p̂i), γ ≡ V ar (Q |Z = zi ).

From here to the end of the proof, when we write E (·), we leave implicit that the expectation

is conditional on p̂i·· > 0.

Using the law of iterated expectations, we have

E
(
θ̃
)

= E
[
E
(
θ̃ |{Zs}ns=1

)]
= E

[∑n
s=1 θI (Zs = zi)∑n
s=1 I (Zs = zi)

]
= θ.

Then the variance of θ̃ equals

V ar
(
θ̃
)

= E
[
E
(
θ̃2 |{Zs}ns=1

)]
− θ2

= E

{∑n
a=1

∑n
b=1E (QaQb |{Zs}ns=1 ) I (Za = zi) I (Zb = zi)∑n

a=1

∑n
b=1 I (Za = zi) I (Zb = zi)

}
− θ2

= E

{∑n
a=1

∑n
b=1 θ

2I (Za = zi) I (Zb = zi) +
∑n

a=1 γI (Za = zi)∑n
a=1

∑n
b=1 I (Za = zi) I (Zb = zi)

}
− θ2

= E

[
1∑n

a=1 I (Za = zi)

]
· γ

=

[
n∑
r=1

1

r

(
n
r

)
(pi··)

r (1− pi··)n−r

1− (1− pi··)n

]
· γ

Note that in the second and third equality, E (QaQb |{Zs}ns=1 ) itself does not equal to

E (QaQb |Za = zi, Zb = zi ). However, E (QaQb |{Zs}ns=1 ) I (Za = zi) I (Zb = zi) equals E (QaQb |Za = zi, Zb = zi ) I (Za = zi) I (Zb = zi).

For a 6= b, E (QaQb |Za = zi, Zb = zi ) = θ2; for a = b, E (QaQb |Za = zi, Zb = zi ) = θ2 + γ.

The results follows.

C.4 Proof of Proposition 4.4

Jensen’s inequality implies B1 (µ) is bounded below by zero. To show it is also bounded

above, we first show E [T1 (X)] is strictly increasing in each µi. As the maximum of j normal
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variates, T1 (X) has the c.d.f.

F (c;µ) =

j∏
i=1

P (Xi ≤ c) =

j∏
i=1

Φ
(
c− µi; 0, σ2

i

)
.

Since the normal c.d.f. is a strictly increasing function, F (c;µ) is strictly decreasing in µ.

To evaluate the expectation, we use the formula, as is suggested by David (1981) and Ross

(2010),

E [T1 (X)] =

∫ ∞
0

[1− F (c;µ)− F (−c;µ)] dc,

It follows that E [T1 (X)] is strictly increasing in each µi. Also note that max (µ) is merely non-

decreasing in each µi. Therefore, to maximize B1 (µ) with respect to µ, a necessary condition

is µa = µb, ∀a, b = 1, ..., j. Otherwise, consider µa < µb, for some a, b. Let ∆′ = µb − µa, then

increasing µa by ∆′ will increase E [T1 (X)] while leaving max (µ) unchanged. A contradiction

to the maximum.

Lastly, by the property of the max (·) function,

B1 (µ+c · ι) = E [T1 (X) + c]− [max (µ) + c]

= B1 (µ) ,

∀c ∈ R, where ι is a vector of ones. This implies as long as µa = µb ≡ µ0, ∀a, b = 1, ..., j, B1 (·)

does not depend on specific choice of µ0. We pick µ0 = 0, and B1 (0) attains the maximum

E [max (X0)].

C.5 Proof of Fact 4.5

B2 (µ) = E [T1 (X)−B1 (X)]−max (µ)

= B1 (µ)− E [B1 (X)] .

Proposition ?? indicates that B1 (µ) > 0, ∀µ∈ Rj , so that E [B1 (X)] > 0. So we have B2 (µ) <

B1 (µ).
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C.6 Proof of Proposition 4.6

To show the proposition, we first introduce a lemma.

Lemma: The nth (uncentered) moment of N
(
µ, σ2

)
is a polynomial of order n with respect

to µ. The leading coefficient (that of µn) is one, and the next leading coefficient (that of µn−1)

is zero.

Proof: It is well known that the central moment of N
(
µ, σ2

)
has a closed-form expression.

E [(X − µ)n] =

 0 if n is odd

σd (n− 1)!! if n is even
,

where (n− 1)!! is the double factorial. This implies that E [(X − µ)n] is a constant with respect

to µ. To find the raw moment E (Xn), we expand E [(X − µ)n] with the formula

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

Put a = 1, b = −1, we have

n∑
k=0

(
n
k

)
(−1)k = 0, or

n∑
k=1

(
n
k

)
(−1)k = −1. We will show the lemma

by induction. Clearly, the it holds for n = 1. Suppose it is true for the first n−1 raw moments,

we want to show it holds for the nth raw moment. Note that

E [(X − µ)n] = E (Xn) +
n∑
k=1

(
n

k

)
(−µ)k E

(
Xn−k

)
.

As is assumed, E
(
Xn−k) is a polynomial of order n− k, the leading coefficient is one and the

next leading coefficient is zero, hence
n∑
k=1

(
n
k

)
(−µ)k E

(
Xn−k) is a polynomial of order n, the

leading coefficient is
n∑
k=1

(
n
k

)
(−1)k = −1, and the next leading coefficient is zero. It follows that

E (Xn) is a polynomial of order n, with the leading coefficient being one and the next leading

coefficient being zero. This proves the lemma.

Now put r = 2 and consider Br (µ) = Br−1 (µ) − E [Br−1 (X)]. Since Br−1 (µ) is a poly-

nomial of order d w.r.t. µ, so the leading term takes the form

j∏
i=1

µaii , where

j∑
i=1

ai = d. The

corresponding term in E [Br−1 (X)] takes the form E

(
j∏
i=1

Xai
i

)
=

j∏
i=1

E (Xai
i ). By the lemma,

E (Xai
i ) is a polynomial of order ai w.r.t. µi, and the coefficient of the leading term µaii is
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one, and the coefficient of the next leading term µai−1
i is zero. This implies that

j∏
i=1

E (Xai
i ) is

a polynomial of order d w.r.t. µ, with the leading term (of order d) coefficient one and next

leading terms (of order d− 1) zero. As a result, when Br−1 (µ) is subtracted by E [Br−1 (X)],

the terms corresponding to order d and d − 1 are canceled, so the order of the polynomial is

reduced by 2. The same arguments can be applied to r = 3, 4, 5, etc.

C.7 Proof of Proposition 4.7

Let A ≡ E [g (ξi, ηi)] = E [g (ξj , ηj,k)], B ≡ V ar [g (ξi, ηi)] = V ar [g (ξj , ηj,k)], ∀i = 1, ..., N2,

j = 1, ..., N , k = 1, ..., N. The two equalities hold because (ξj , ηj,k) are drawn by the method of

composition, the joint distribution of (ξj , ηj,k) is the same as that of directly sampled (ξi, ηi).

Clearly, E (S1) = E (S2) = A, V ar (S1) = 1
N2B. When we compute V ar (S2), we need to

consider the covariance terms as well.

V ar (S2) =
1

N
V ar

[
1

N

N∑
k=1

g (ξ1, η1,k)

]

=
1

N

1

N2

N∑
k=1

N∑
h=1

cov [g (ξ1, η1,k) , g (ξ1, η1,h)]

=
1

N2
B +

1

N3

N∑
k=1

N∑
h=1,h6=k

cov [g (ξ1, η1,k) , g (ξ1, η1,h)] .

Now we show each of those covariance terms is non-negative.

cov [g (ξ1, η1,k) , g (ξ1, η1,h)]

= E {[g (ξ1, η1,k)−A] · [g (ξ1, η1,h)−A]}

= Eξ1

{
Eη1,k|ξ1 [g (ξ1, η1,k)−A] · Eη1,h|ξ1 [g (ξ1, η1,h)−A]

}
= Eξ1

[
c2 (ξ1)

]
≥ 0,

where c (ξ1) ≡ Eη1,k|ξ1 [g (ξ1, η1,k)−A] = Eη1,h|ξ1 [g (ξ1, η1,h)−A]. It follows that V ar (S1) ≤

V ar (S2).

Note that in the above proof, V ar (S1) = V ar (S2) only if Eη1,k|ξ1 [g (ξ1, η1,k)] = A for all

realizations of ξ1. The independency of ξ and η does not necessarily imply V ar (S1) = V ar (S2).
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When we take conditional expectation of g (ξ1, η1,k), ξ1 should be treated as a constant and in

general c (ξ1) 6= 0, even if for independent variates.
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